1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
shepuryov [24]
3 years ago
13

Classes are canceled due to snow, so you take advantage of the extra time to conduct some physics experiments. You fasten a larg

e toy rocket to the back of a sled, and take the modified sled to a large, flat, snowy field. You ignite the rocket, and observe that the sled accelerates from rest in the forward direction at a rate of 13.5 m/s2 for a time period of 3.30 s. After this time period, the rocket engine abruptly shuts off, and the sled subsequently undergoes a constant backward acceleration due to friction of 6.15 m/s2.After the rocket turns off, how much time does it take for the sled to come to a stop?By the time the sled finally comes to a rest, how far has it traveled from its starting point?
Physics
1 answer:
valentina_108 [34]3 years ago
4 0

Answer:

-time it takes for the sled to come to a stop after launch of rocket = 7.244 s

-distance sled has travelled from its starting point by the time it finally comes to rest is = 234.8655 m

Explanation:

From the question, looking at the motion while accelerating, we have;

Initial velocity; u = 0 m/s

Acceleration; a = 13.5 m/s²

Time; t = 3.3 s

Let's use first equation of motion to find final velocity (v).

v = u + at

v = 0 + (13.5 × 3.3)

v = 44.55 m/s

In this forward direction, let's calculate the displacement(d1) using newton's 3rd equation of motion.

d1 = ut + ½at²

d1 = 0(3.3) + ½(13.5 × 3.3²)

d1 = 73.5075 m

Now, let's consider the motion while slowing down and our final velocity will be 0 m/s while initial velocity will now be 44.55 m/s while acceleration is 6.15 m/s².

Thus, from v = u + at, we can find the time it take for the sled to come to a stop.

Now, since it's coming to rest acceleration will be negative. Thus;

0 = 44.55 + (-6.15t)

0 = 44.55 - 6.15t

t = 44.55/6.15

t = 7.244 s

Now we want to find out how far the sled has travelled from its starting point by the time it finally comes to rest.

Thus, we'll use the equation;

v² = u² + 2as

Where s will be the second displacement which we will call d2.

Thus;

0² = 44.55² + (-2 × 6.15 × s)

0 = 1984.7025 - 12.3s

12.3s = 1984.7025

s = 1984.7025/12.3

s = 161.358

Thus, d2 = s = 161.358 m

Thus, distance sled has travelled from its starting point by the time it finally comes to rest is ;

= d1 + d2 = 73.5075 + 161.358 = 234.8655 m

You might be interested in
What are similarities between the Rorschach inkblots and the TAT test?
Luden [163]
The Rorschach inkblots and the TAT (Thematic Appreciation Test) both rely on providing the subject with ambiguous visual stimuli and assessing the subject's state of mind using the subject's interpretation of the stimuli.
Both use cards, although not all of the cards are used in the TAT. Moreover, the TAT cards contain sketches, while the Rorschach inkblots contain patterns of ink.
5 0
3 years ago
In which changes of state do atoms lose energy
Anika [276]
             Yeah, it's every state. Atoms need a certain quanta of energy to jump to each state of energy, and therefore change state depending on how much energy is absorbed and/or released. This applies to all states of matter.        
6 0
3 years ago
Instead of moving back and forth, a conical pendulum moves in a circle at constant speed as its string traces out a cone (see fi
tigry1 [53]

Answer:

a

The  radial acceleration is  a_c  = 0.9574 m/s^2

b

The horizontal Tension is  T_x  = 0.3294 i  \ N

The vertical Tension is  T_y  =3.3712 j   \ N

Explanation:

The diagram illustrating this is shown on the first uploaded

From the question we are told that

   The length of the string is  L =  10.7 \ cm  =  0.107 \ m

     The mass of the bob is  m = 0.344 \  kg

     The angle made  by the string is  \theta  =  5.58^o

The centripetal force acting on the bob is mathematically represented as

         F  =  \frac{mv^2}{r}

Now From the diagram we see that this force is equivalent to

     F  =  Tsin \theta where T is the tension on the rope  and v is the linear velocity  

     So

          Tsin \theta  =   \frac{mv^2}{r}

Now the downward normal force acting on the bob is  mathematically represented as

          Tcos \theta = mg

So

       \frac{Tsin \ttheta }{Tcos \theta }  =  \frac{\frac{mv^2}{r} }{mg}

=>    tan \theta  =  \frac{v^2}{rg}

=>   g tan \theta  = \frac{v^2}{r}

The centripetal acceleration which the same as the radial acceleration  of the bob is mathematically represented as

      a_c  =  \frac{v^2}{r}

=>  a_c  = gtan \theta

substituting values

     a_c  =  9.8  *  tan (5.58)

     a_c  = 0.9574 m/s^2

The horizontal component is mathematically represented as

     T_x  = Tsin \theta = ma_c

substituting value

   T_x  = 0.344 *  0.9574

    T_x  = 0.3294 \ N

The vertical component of  tension is  

    T_y  =  T \ cos \theta  = mg

substituting value

     T_ y  =  0.344 * 9.8

      T_ y  = 3.2712 \ N

The vector representation of the T in term is of the tension on the horizontal and the tension on the vertical is  

         

       T  = T_x i  + T_y  j

substituting value  

      T  = [(0.3294) i  + (3.3712)j ] \  N

         

3 0
3 years ago
I need help with 1-10
e-lub [12.9K]

Answer:

1) C. Energy

2) A. Joule

3) D. Joule

4) B. Potential

5) A. Greater

6) C. Largest

7) A. Speed and mass

8) A. Kinetic

9) A. Kinetic

10) D. Height and mass

3 0
2 years ago
Can anyone tell me what's the base quantities for Force, Pressure and Charge?​
mr Goodwill [35]

Force, pressure, and charge are all what are called <em>derived units</em>. They come from algebraic combinations of <em>base units</em>, measures of things like length, time, temperature, mass, and current. <em>Speed, </em>for instance, is a derived unit, since it's a combination of length and time in the form [speed] = [length] / [time] (miles per hour, meters per second, etc.)

Force is defined with Newton's equation F = ma, where m is an object's mass and a is its acceleration. It's unit is kg·m/s², which scientists have called a <em>Newton</em>. (Example: They used <em>9 Newtons</em> of force)

Pressure is force applied over an area, defined by the equation P = F/A. We can derive its from Newtons to get a unit of N/m², a unit scientists call the <em>Pascal</em>. (Example: Applying <em>100 Pascals </em>of pressure)

Finally, charge is given by the equation Q = It, where I is the current flowing through an object and t is how long that current flows through. It has a unit of A·s (ampere-seconds), but scientist call this unit a Coulomb. (Example: 20 <em>Coulombs</em> of charge)

4 0
2 years ago
Other questions:
  • A power boat pulls a water skier 2.6 km maintaining a
    7·1 answer
  • A solar cell generates a potential difference of 0.25 V when a 550 Ω resistor is connected across it, and a potential difference
    12·1 answer
  • A ____ mirror will diverge light rays. <br> a. convex <br> b. plane <br> c. concave
    9·2 answers
  • If you increase the force on a box, it will have...
    10·1 answer
  • How do local action make the cell defective​
    13·1 answer
  • Segment D - E : The bus is speed_____ It is gradually increasing it's
    15·1 answer
  • Your car is initially at rest when your hit that gas and the car begins to accelerate at a rate of 1.464 m/s/s. The acceleration
    6·1 answer
  • Two physics students are arguing about superconductors and their discovery, Jeffe says that he can use a
    6·1 answer
  • What are some of the main types of force? Explain.
    6·2 answers
  • How long can you drive on empty?
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!