Kinetic energy would increase sir.
Answer:
20 ms¯¹
Explanation:
3. Determination of the final velocity
From the question given above, the following data were obtained:
Time (t) = 4 s
Acceleration (a) = 5 ms¯²
Initial velocity (u) = 0 ms¯¹
Final velocity (v) =?
Acceleration is simply defined as the change in velocity per unit time.
Mathematically, it can be expressed as:
Acceleration (a) = final velocity – Initial velocity / time
a = v – u / t
With the above formula, we can obtain the final velocity of the car as follow:
Time (t) = 4 s
Acceleration (a) = 5 ms¯²
Initial velocity (u) = 0 ms¯¹
Final velocity (v) =?
a = v – u / t
5 = v – 0 / 4
5 = v / 4
Cross multiply
v = 5 × 4
v = 20 ms¯¹
Thus, the final velocity of the car is 20 ms¯¹
His is a step down transformer since n(primary) is greater than n(seconcary). You relate the input voltage with the ouput voltage with the following equation:
<span>Vout = n2/n1*Vin (n2/n1 is essentially your 'transfer function' that dictates what a specified input would produce) </span>
<span>Solving the equation: </span>
<span>Vin = Vout*n1/n2 = (320V)*(600/300) = 640 V </span>
<span>This is checked by seeing if Vin is greater than Vout, which it is for a step down transformer.</span>