The accurate description of the process of erosion is when <span>moving bits of rock and soil across the earth’s surface by water, wind, or glaciers. The answer is letter C.</span>
Answer:
1047 miles
Explanation:
The radius of the Earth is
(miles)
So its circumference, which is the total length of the equator, is given by

Now we know that the Earth rotates once every 24 hours. So the distance through which the equator moves in one hour is equal to its total length divided by the number of hours, 24:

A. electrons<span> and </span>neutrons<span> B. </span>electrons<span> and </span>protons<span> C. </span>protons<span> and </span>neutrons<span> D. all particles are attracted to each other. According to atomic theory, </span>electrons<span> are usually found: A. in the </span>atomic nucleus<span> B. outside the nucleus, yet very near it because they are attracted to the </span>protons<span>.</span>
Refer to the diagram shown below.
Assume that air resistance is ignored.
Note:
The distance, h, of a falling object with initial vertical velocity of zero at time t is
h = (1/2)gt²
where
g = 9.8 m/s²
The initial vertical velocity of the supplies is 0 m/s.
It the time taken for the supplies to reach the ground is t, then
(50 m) = (1/2)*(9.8 m/s²)*(t s)²
Hence obtain
t² = 50/4.9 = 10.2041
t = 3.1944 s
The horizontal distance traveled at a speed of 100 m/s is
d = (100 m/s)*(3.1944 s) = 319.44 m
Answer: 319.4 m (nearest tenth)
The initial speed of car A is 15.18 m/s.
Momentum is defined as mass in motion. If there are two objects (the two objects in motion or only one object in motion and the other in stationary) that collide and no other forces work in the system, the law of momentum conservation applies in the system.
p=p'
pa+pb = pa'+pb'
(ma×va) + (mb×vb) = (ma×va') + (mb×vb')
- ma = mass of object A (kg) = 1,783 kg
- mb = mass of object B (kg) = 1,600 kg
- va = speed of object A before collides (m/s)
- va' = speed of object A after collides (m/s) = 8 m/s
- vb = speed of object B before collides (m/s) = 0 m/s
- vb' = speed of object B after collides (m/s) = 8 m/s
- p = momentum before collision (Ns)
- p' = momentum after collision (Ns)
(ma×va) + (mb×vb) = (ma×va') + (mb×vb')
(1,783×va) + (1,600×0) = (1,783×8) + (1,600×8)
(1,783×va) + 0 = 14,264+12,800
(1,783×va) = 27,064

va = 15.18 m/s
Learn more about The law of momentum conservation here: brainly.com/question/7538238
#SPJ4