Answer:
The lever is a movable bar that pivots on a fulcrum attached to a fixed point. The lever operates by applying forces at different distances from the fulcrum, or a pivot. As the lever rotates around the fulcrum, points farther from this pivot move faster than points closer to the pivot.
IF HELPED MARK AS BRAINLIEST
If the mass of the sun is 1x, at least one planet will fall into the habitable zone. if I place a planet in orbits 2, 6, and 75, and all planets will orbit the sun successfully.
If the mass of the sun is 2x, at least one planet will fall into the habitable zone. if I place a planet in orbits 84, 1, and 5, and all planets will orbit the sun successfully.
If the mass of the sun is 3x, at least one planet will fall into the habitable zone if I place a planet in orbits 672, and 7 and all planets will orbit the sun successfully.
Show us the pictures I don't see it
When you look at this, you might not be sure which way to divide ...
Should you divide 6 by 5 or 5 by 6 ?
Here's a case where you can use your units to decide.
The question wants to know the 'period'. That's a length of time,
so the answer needs to have units of time.
If you divide 'cycles' be 'time', you'll get 'cycles/second'.
That's Hz. It's frequency, not time.
If you divide 'time' by 'cycles', you'll get 'seconds/cycle'.
That's time, and it's exactly the definition of 'period'.
Period = (6 seconds) / (5 cycles)
= (6 / 5) seconds/cycle
= 1.2 seconds
Recall that work is the amount of energy transferred to an object when it experiences a displacement and is acted upon by an external force. It is given a symbol of W and is measured in joules (J).
W=\vec{F}\cdot \Delta \vec{d}
We can use this formula to determine the work done by very specific forces, generating specific types of energy. We will examine three types of energy in this activity: gravitational potential, kinetic, and thermal. Before we start deriving equations for gravitational potential energy and kinetic energy, we should note that since work is the transfer and/or transformation of energy, we can also write its symbol as \Delta E.