Answer:
Option 5. 1 and 3
Solution:
The only forces acting on the tennis ball after it has left contact with the racquet and the instant before it touches the ground are the force of gravity in the downward direction and the force by the air exerted on the ball.
The ball after it left follows the path of trajectory and as it moves forward in the horizontal direction the force of the air acts on it.
In the whole projectile motion of the ball, the acceleration due to gravity acts on the ball thus the force of gravity acts on the ball in the downward direction before it hits the ground.
-- Momentum is (mass) x (speed).
Object B has 1.5 times as much momentum as Object A has.
-- Kinetic energy is (1/2) x (mass) x (speed) .
Object B has 1.5 times as much kinetic energy as Object A has.
-- If they would both stop long enough to get on the scale,
Object B would weigh 1.5 times as much as Object A does.
I believe that your answer is going to be C. The ability to do work
The final velocity of skater 1 is 3.7 m/s to the right. The right option is O A. 3.7 m/s to the right.
<h3>What is velocity?</h3>
Velocity can be defined as the ratio of the displacement and time of a body.
To calculate the final velocity of Skater 1 we use the formula below.
Formula:
- mu+MU = mv+MV............ Equation 1
Where:
- m = mass of the first skater
- M = mass of the second skater
- u = initial velocity of the first skater
- U = initial velocity of the second skater
- v = final velocity of the first skater
- V = final velocity of the second skater.
make v the subject of the equation.
- v = (mu+MU-MV)/m................ Equation 2
Note: Let left direction represent negative and right direction represent positive.
From the question,
Given:
- m = 105 kg
- u = -2 m/s
- M = 71 kg
- U = 5 m/s
- V = -3.4 m/s.
Substitute these values into equation 2
- v = [(105×(-2))+(71×5)-(71×(-3.4))]/105
- v = (-210+355+241.4)/105
- v = 386.4/105
- v = 3.68 m/s
- v ≈ 3.7 m/s
Hence, the final velocity of skater 1 is 3.7 m/s to the right. The right option is O A. 3.7 m/s to the right.
Learn more about velocity here: brainly.com/question/25749514