Answer:
0 m/s
Explanation:
velocity= change in displacement/ time
at rest, the ball does not travel any distance
0/ t
=0
Answer:
mass = 4kg
Explanation:
Kinetic Energy = 1/2 x m x v²
where m = mass and v = velocity
So,
KE = 50
1/2 × m × 5² = 50
1/2 × m × 25 = 50
m = (50 x 2)/25
m = 100/25
m = 4 kg
Based on my information, this would actually be representing
"the average kinetic energy of water particles". So, as you take notice that where this temperature is being located, and also, how this would be

°C, this would make more sense for this to be representing as <span>the
average kinetic energy of water particles.</span>
Answer:
This is because the force of gravity is much less on the moon than on the earth, therefore the person wont be pulled down much and will jump higher
Answer: 0.5 m/s
Explanation:
Given
Speed of the sled, v = 0.55 m/s
Total mass, m = 96.5 kg
Mass of the rock, m1 = 0.3 kg
Speed of the rock, v1 = 17.5 m/s
To solve this, we would use the law of conservation of momentum
Momentum before throwing the rock: m*V = 96.5 kg * 0.550 m/s = 53.08 Ns
When the man throws the rock forward
rock:
m1 = 0.300 kg
V1 = 17.5 m/s, in the same direction of the sled with the man
m2 = 96.5 kg - 0.300 kg = 96.2 kg
v2 = ?
Law of conservation of momentum states that the momentum is equal before and after the throw.
momentum before throw = momentum after throw
53.08 = 0.300 * 17.5 + 96.2 * v2
53.08 = 5.25 + 96.2 * v2
v2 = [53.08 - 5.25 ] / 96.2
v2 = 47.83 / 96.2
v2 = 0.497 ~= 0.50 m/s