1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elza [17]
3 years ago
13

I need the answer fore both plsss

Mathematics
1 answer:
grandymaker [24]3 years ago
5 0

Answer:  6i) 6a² - 2ab

               6ii) -2b³

               6iii) b³ + 7b² - 49b

<u>Step-by-step explanation:</u>

6i)   (a + b)(5a - 3b)             +    (a - 3b)(a - b)

=    5a² - 3ab + 5ab - 3b²   +    a² - ab - 3ab + 3b²

=    5a² + 2ab - 3b²             +   a² - 4ab + 3b²

= 6a² - 2ab

6ii)    (a - b)(a² + b² + ab)              -  (a + b)(a² + b² - ab)

=   a³ + ab² + a²b - ab² - a²b - b³ -  (a³ + ab² - a²b -ab² + a²b + b³)

=   a³ - b³                                      -  (a³ + b³)

=   a³ - b³                                      - a³ - b³

= -2b³

6iii) (b² - 49)(b + 7)             +     343

=     b³ + 7b² - 49b - 343    +    343

=     b³ + 7b² - 49b

You are allowed a maximum of 3 questions.

Please post #7 on a different question.

You might be interested in
A box in the shape of a rectangular prism has a length of x inches, a width of 0.5x inches and a height of 2x inches. The volume
telo118 [61]

Answer:

The answer should be 44.72 inches.

Step-by-step explanation:

In order to find the height when given the volume, use the formula V=Ah

The area can be found by multiplying the length and the width. (x)(.5x) = .5x^2

Now, 1,000= .5x^2(h).

Take the volume and divide it by .5. This gives you 2,000.

Now the equation is 2,000=x^2 (h)

Take the square root of 2,000 and this gives you the answer of 44.72 inches.

6 0
3 years ago
Find the area of the blue sector. Use 3.14 for pi and round to the nearest hundredth.
raketka [301]
I hope this helps you

7 0
4 years ago
Read 2 more answers
Write an algebraic expression that models the situation “the piggy bank contained $25, and $1.50 is added each day.” Use d to re
Kryger [21]

the answer is b because the piggy bank originally contained $25 and the person adds $1.50 per day.. so: 25+1.5d

3 0
3 years ago
54 1/4% equals _____
tresset_1 [31]
The answer to the question

8 0
3 years ago
<img src="https://tex.z-dn.net/?f=%7B%5Chuge%7B%5Cunderline%7B%5Csmall%7B%5Cmathbb%7B%5Cpink%7BREFER%20%5C%20TO%20%5C%20THE%20%5
marusya05 [52]

Answer:

See below

(B) and (C) are correct.

Step-by-step explanation:

We have the following limit

$\lim \limits_{n\rightarrow \infty} \left(\frac{n^n(x+n) \left(x+\dfrac{n}{2} \right)\dots \left(x+\dfrac{n}{n} \right)}{n!(x^2+n^2)\left(x^2+\dfrac{n^2}{4} \right)\dots \left(x^2+\dfrac{n^2}{n^2} \right)}\right)^{\dfrac{x}{n} }, \forall x>0$

I am not sure about methods concerning the quotient, but in this type of question I would try to convert this limit into integration.

Considering the numerator, we have

$(x+n) \left(x+\dfrac{n}{2} \right)\dots \left(x+\dfrac{n}{n} \right) = \prod_{k=1}^n  \left(x+\dfrac{n}{k} \right)$

- I didn't forget about n^n

Considering the denominator, we have

$(x^2+n^2)\left(x^2+\dfrac{n^2}{4} \right)\dots \left(x^2+\dfrac{n^2}{n^2} \right)}\right) = \prod_{k=1}^n  \left(x^2+\dfrac{n^2}{k^2} \right)$

- I didn't forget about n!

Therefore,

$\left(\frac{n^n(x+n) \left(x+\dfrac{n}{2} \right)\dots \left(x+\dfrac{n}{n} \right)}{n!(x^2+n^2)\left(x^2+\dfrac{n^2}{4} \right)\dots \left(x^2+\dfrac{n^2}{n^2} \right)}\right)^{\dfrac{x}{n} } = \left(\dfrac{n^2 \prod_{k=1}^n  \left(x+\dfrac{n}{k} \right)}{ n!\prod_{k=1}^n  \left(x^2+\dfrac{n^2}{k^2} \right)} \right)$

$= \left(\dfrac{n^n}{n!}\prod_{k=1}^n\dfrac{\left(x+\dfrac{n}{k}\right)}{\left(x^2+\dfrac{n^2}{k^2}\right)}\right)^{\dfrac{x}{n}}$

Now we have

$\lim \limits_{n\rightarrow \infty}  \left(\dfrac{n^n}{n!}\prod_{k=1}^n\dfrac{\left(x+\dfrac{n}{k}\right)}{\left(x^2+\dfrac{n^2}{k^2}\right)}\right)^{\dfrac{x}{n}}, \forall x>0$

This is just the notation change so far.

What I want to do here is apply definite integrals using Riemann Integrals (We will write the limit as an definite integral). A nice way to do it is using logarithms. Therefore, we can apply the natural logarithm in both sides.

Now, recall two properties of logarithms:

\boxed{\log_a mn = \log_a m + \log_a n}

\boxed{\log_a m^p = p\log_a m}

\boxed{\log_a  \left(\dfrac{m}{n} \right) = \log_a m- \log_a n}

Thus,

$\ln f(x) = \lim \limits_{n\rightarrow \infty}  \ln \left(\dfrac{n^n}{n!}\prod_{k=1}^n\dfrac{\left(x+\dfrac{n}{k}\right)}{\left(x^2+\dfrac{n^2}{k^2}\right)}\right)^{\dfrac{x}{n}} $

$= \lim \limits_{n\rightarrow \infty}   \dfrac{x}{n}\ln\left(\dfrac{n^n}{n!}\prod_{k=1}^n\dfrac{\left(x+\dfrac{n}{k}\right)}{\left(x^2+\dfrac{n^2}{k^2}\right)}\right) $

$=  \lim \limits_{n\rightarrow \infty}  \dfrac{x}{n} \left[\ln  \left(n^n \prod_{k=1}^n  \left(x+\dfrac{n}{k} \right)  \right)-\ln  \left( n!\prod_{k=1}^n  \left(x^2+\dfrac{n^2}{k^2} \right)  \right) \right]$

$=  \lim \limits_{n\rightarrow \infty}  \dfrac{x}{n} \left[\ln  n^n + \prod_{k=1}^n  \ln \left(x+\dfrac{n}{k}  \right)-\ln  n! -\prod_{k=1}^n  \ln\left(x^2+\dfrac{n^2}{k^2} \right)  \right]$

Considering

$\lim \limits_{n\rightarrow \infty} \frac{x}{n} (\ln n^n - \ln  n! ) = \lim \limits_{n\rightarrow \infty} \frac{x}{n} (n\ln n - \ln  n! )= \lim \limits_{n\rightarrow \infty} \frac{x \cdot\ln\frac{n^n}{n!} }{n} $

Using Stirling's formula

$\dfrac{n^n}{n!}\underset{\infty}{\sim} \dfrac{n^n}{\sqrt{2n \pi}\left(\dfrac{n}{e}\right)^n}=\dfrac{e^n}{\sqrt{2n \pi}}$

then

$\ln\left(\frac{n^n}{n!}\right)\underset{\infty}{=}n\ln\left(e\right)-\frac{1}{2}\ln\left(2n\pi\right)+o\left(1\right)$

$\implies \frac{\ln\left(\frac{n^n}{n!}\right)}{n}=1-\frac{\ln(2n\pi)}{2n}+o\left(1\right)$

This shows our limit equals 1 as $\frac{\log(2\pi n)}{2n} \rightarrow 0$ and \ln(e)=1

Employing a Riemann sum in the main limit, we have

$= \lim \limits_{n\rightarrow \infty}  \dfrac{x}{n} \left[ \sum_{k=1}^n \ln \left(x+\dfrac{n}{k} \right)  - \sum_{k=1}^n\ln \left(x^2+\dfrac{n^2}{k^2} \right)  \right]$

Now dividing the terms inside the parenthesis by \dfrac{n}{k} in \sum_{k=1}^n \ln \left(x+\dfrac{n}{k} \right)

we have

$\sum_{k=1}^n \ln \left(x+\dfrac{n}{k} \right)  = \sum_{k=1}^n \ln \left(\frac{kx}{n} +1\right) $

Now dividing the terms inside the parenthesis by \dfrac{n^2}{k^2} in \sum_{k=1}^n \ln \left(x^2+\dfrac{n^2}{k^2} \right)

we have

$\sum_{k=1}^n \ln \left(x^2+\dfrac{n^2}{k^2} \right)  = \sum_{k=1}^n \ln \left(\frac{(kx)^2}{n^2} +1\right) $

Therefore

$= \frac xn\sum_{k=1}^n\ln\dfrac{z+1}{z^2+1}$

for \dfrac{kx}{n}  = z

Using Riemann Integral,

$\lim \limits_{n\rightarrow \infty}  \int_0^1\ln\frac{z+1}{z^2+1}dz$

From

$\frac{f'(x)}{f(x)}=\ln\frac{z+1}{z^2+1}$

We can see that the function is increasing for , but because of the denominator, it is negative for .

Therefore,

(A) is false because \dfrac{1}{2} < 1

(B) is true because

(C) is true the slope is negative at that point

(D) is false, just consider $\ln\frac{z+1}{z^2+1}$ for z=1 and z=2

7 0
3 years ago
Other questions:
  • What is 10% of 50? <br> A. 6.75<br> B. 7.5<br> C. 10.5 <br> D. 5.25
    8·1 answer
  • What is the slope of this line?
    11·1 answer
  • Kerri said that the product of 3.93 and 0.07 would be about 4 and would have two decimal places. Is she correct?
    7·2 answers
  • Can someone help me answer these questions
    12·1 answer
  • Beth and cade were on one team what was their total score
    6·1 answer
  • 11= r/6<br><br> Doing math homework in class right now, can’t figure it out. Not good with fractions
    5·2 answers
  • Please help I'll mark brainliest
    11·1 answer
  • The length of a garden is 25 m. Find the width knowing that the area is between 300 m2 I need it now pls
    15·1 answer
  • Why might andrew have stopped 3 times for 1 minute?
    7·1 answer
  • 3. Determine which of the following variables are qualitative and which are quantitative variables. Explain your
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!