(a) Does an electric field exert a force on a stationary charged object? YES ( F = Eq)
(b) Does a magnetic field do so?- NO ( F= qvB)
(c) Does an electric field exert a force on a moving charged object? YES
(d) Does a magnetic field do so? YES ( F = qvB)
(e) Does an electric field exert a force on a straight current-carrying wire? ( NO)
(f) Does a magnetic field do so? Yes
(g) Does an electric field exert a force on a beam of moving electrons? Yes
(h) Does a magnetic field do so? YeS
To know more about magnetic field visit : brainly.com/question/10353944
#SPJ4
I say 1 it seems the most accurate
The effective temperature of a star is relative to the
fourth root of the luminosity and is contrariwise proportional to the square
root of the radius.
L = k R² T⁴
If the radius remains continuous, while the luminosity doubles, the temperature
must increase by a factor of the fourth root of two.
If L → 2L, then T → 1.189207115 T
So the answer is approximately 1.19 times.
<span><span>A 0.200 kg plastic ball moves with a velocity of0.30 m</span>s<span>A 0.205-kg plastic ball moves with a velocity of0.30 m</span><span>A 0.199 kg plastic ball moves with a velocity of0.30 m</span><span>A 0.204-kg plastic ball moves with a velocity of0.30 m</span><span>A 100 g ball moving to the right at 4.0 m</span>s collides<span>have less momentum if the velocities</span><span>the same</span><span>A ball with a momentum of 4.0 kg•<span>m</span></span></span>
Answer:
λ= 5.24 × 10 ⁻² nC/cm
Explanation:
Given:
distance r = 4.10 cm = 0.041 m
Electric field intensity E = 2300 N/C
K = 9 x 10 ⁹ Nm²/C
To find λ = linear charge density = ?
Sol:
we know that E= 2Kλ / r
⇒ λ = -E r/2K (-ve sign show the direction toward the wire)
λ = (- 2300 N/C × 0.041 m) / 2 × 9 x 10 ⁹ Nm²/C
λ = 5.24 × 10 ⁻⁹ C/m
λ = 5.24 nC/m = 5.24 nC/100 cm
λ= 5.24 × 10 ⁻² nC/cm