1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mariana [72]
3 years ago
12

Suppose the rocket in the Example was initially on a circular orbit around Earth with a period of 1.6 days. Hint (a) What is its

orbital speed (in m/s)? m/s (b) If we want to propel a portion of the rocket to infinity (in the direction tangential to the circular orbit), what's the escape speed from there (in m/s)? m/s
Physics
1 answer:
ruslelena [56]3 years ago
7 0

Answer:

a

The orbital speed is v= 2.6*10^{3} m/s

b

The escape velocity of the rocket is  v_e= 3.72 *10^3 m/s

Explanation:

Generally angular velocity is mathematically represented as

            w = \frac{2 \pi}{T}

Where T is the period which is given as 1.6 days = 1.6 *24 *60*60 = 138240 sec

       Substituting the value

         w = \frac{2 \pi}{138240}

             = 4.54*10^ {-5} rad /sec

At the point when the rocket is on a circular orbit  

   The gravitational force =  centripetal force and this can be mathematically represented as

              \frac{GMm}{r^2} = mr w^2

Where  G is the universal gravitational constant with a value  G = 6.67*10^{-11}

            M is the mass of the earth with a constant value of M = 5.98*10^{24}kg

            r is the distance between earth and circular orbit where the rocke is found

               Making r the subject

                     r = \sqrt[3]{\frac{GM}{w^2} }

                        = \sqrt[3]{\frac{6.67*10^{-11} * 5.98*10^{24}}{(4.45*10^{-5})^2} }

                        = 5.78 *10^7 m

The orbital speed is represented mathematically as

                   v=wr

Substituting value

                  v= (5.78*10^7)(4.54*10^{-5})

                     v= 2.6*10^{3} m/s    

The escape velocity is mathematically represented as

                            v_e = \sqrt{\frac{2GM}{r} }

Substituting values

                             = \sqrt{\frac{2(6.67*10^{-11})(5.98*10^{24})}{5.78*10^7} }

                             v_e= 3.72 *10^3 m/s

You might be interested in
Which best explains how thermal energy is transferred when someone holds a hand above a fire?
Artyom0805 [142]
Heat rises therefore the heat from the fire rises up to your hand... i didnt have any answer choices to work with sorry
5 0
3 years ago
Read 2 more answers
What are the wavelengths of electromagnetic wave in free space that have the following frequencies?.
irina [24]

The wavelengths of the light are 4.3 * 10^-12 m and 0.2 m respectively.

<h3>What is wavelength?</h3>

The term wavelength has to do with the horizontal distance that is covered by a wave. We know that a long wavelength implies that the wave is able to travel a long distance from one point to another.

Given that;

c = λf

c = speed of light

λ = wavelength of ight

f = frequency of light

Thus;

λ = 3 * 10^8/ 7.00 x 10^19

λ = 4.3 * 10^-12 m

λ = 3 * 10^8/1.50 x 10^9

λ = 2 * 10^-1 or 0.2 m

Learn more about wavelength:brainly.com/question/13533093

#SPJ1

Missing parts:

What are the wavelengths of electromagnetic wave in free space that have the following frequencies? (a) 7.00 x 10^19 Hz______ pm (b) 1.50 x 10^9 Hz__________ cm

7 0
2 years ago
Read 2 more answers
Plz help
katrin2010 [14]

The particles of the medium (slinky in this case) move up and down (choice #2) in a transverse wave scenario.

This is the defining characteristic of transverse waves, like particles on the surface of water while a wave travels on it, or like particles in a slack rope when someone sends a wave through by giving it a jolt.

The other kind of waves is longitudinal, where the particles of the medium move "left-and-right" along the direction of the wave propagation. In the case of the slinky, this would be achieved by giving a tensioned slinky an "inward" jolt. You would see that such a jolt would give rise to a longitudinal wave traveling along the length of the tensioned slinky. Another example of longitudinal waves are sound waves.

4 0
4 years ago
A swimming pool is 50 ft wide and 100 ft long and its bottom is an inclined plane, the shallow end having a depth of 4 ft and th
Nina [5.8K]

Explanation:

We define force as the product of mass and acceleration.

F = ma

It means that the object has zero net force when it is in rest state or it when it has no acceleration. However in the case of liquids. just like the above mentioned case, the water is at rest but it is still exerting a pressure on the walls of the swimming pool. That pressure exerted by the liquids in their rest state is known as hydro static force.

Given Data:

Width of the pool = w = 50 ft

length of the pool = l= 100 ft

Depth of the shallow end = h(s) = 4 ft

Depth of the deep end = h(d) = 10 ft.

weight density = ρg = 62.5 lb/ft

Solution:

a) Force on a shallow end:

F = \frac{pgwh}{2} (2x_{1}+h)

F = \frac{(62.5)(50)(4)}{2}(2(0)+4)

F = 25000 lb

b) Force on deep end:

F = \frac{pgwh}{2} (2x_{1}+h)

F = \frac{(62.5)(50)(10)}{2} (2(0)+10)

F = 187500 lb

c) Force on one of the sides:

As it is mentioned in the question that the bottom of the swimming pool is an inclined plane so sum of the forces on the rectangular part and triangular part will give us the force on one of the sides of the pool.

1) Force on the Rectangular part:

F = \frac{pg(l.h)}{2}(2(x_{1} )+ h)

x_{1} = 0\\h_{s} = 4ft

F = \frac{(62.5)(100)(2)}{2}(2(0)+4)

F =25000lb

2) Force on the triangular part:

F = \frac{pg(l.h)}{6} (3x_{1} +2h)

here

h = h(d) - h(s)

h = 10-4

h = 6ft

x_{1} = 4ft\\

F = \frac{62.5 (100)(6)}{6} (3(4)+2(6))

F = 150000 lb

now add both of these forces,

F = 25000lb + 150000lb

F = 175000lb

d) Force on the bottom:

F = \frac{pgw\sqrt{l^{2} + ((h_{d}) - h(s)) } (h_{d}+h_{s})   }{2}

F = \frac{62.5(50)\sqrt{100^{2}(10-4) } (10+4) }{2}

F = 2187937.5 lb

7 0
4 years ago
PLEASE HELP ME WILL GIVE BRAINLIEST
weqwewe [10]

Answer:

A.always changing

Explanation:

7 0
3 years ago
Read 2 more answers
Other questions:
  • A small dog is trained to jump straight up a distance of 1.2m. How much kinetic energy does the 7.2kg dog need to jump this high
    6·2 answers
  • A person walks one mile home and 1/2 mile back towards school. What is the distance traveled? What is the displacement?
    10·1 answer
  • Which type of friction keeps a pile of rocks from falling apart?
    13·2 answers
  • Suppose you watch a leaf bobbing up and down as ripples pass it by in a pond. You notice that it does two full up and down bobs
    11·1 answer
  • What is the main element that stars are made of
    14·2 answers
  • A cartoon shows two friends watching an unoccupied car in free fall after it has rolled off a cliff. one friend says to the othe
    12·2 answers
  • Imagine a block that is 10 cm x 10 cm x 10 cm. If you cut the block in half, what then would be the dimensions of 1/2 of the blo
    10·1 answer
  • Select whether the argument is an example of a deductive or an inductive argument:
    9·1 answer
  • (Serious Please) patulong​
    14·1 answer
  • Historia de baloncesto internacional resumen
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!