Answer:
it was "The light bends because it changes speed." for me i took the test
Explanation:
i show the thing. i hope this helps
Answer:
very small solid particles called interstellar dust.
Explanation:
In the space between the stars there is gas and dust, which represent at least 20% of the mass of our galaxy. In the Milky Way it is considered that there is a gas density of approximately 0.2 to 0.5 atoms / cm3 in the surroundings of the Sun; with respect to the dust an average of 1 g / cm3 is estimated.
Gas is about atoms and molecules, mainly hydrogen; In order of abundance, helium, carbon, oxygen, nitrogen and iron follow. On the other hand, the dust is tiny particles, generally smaller than 10 microns; the dust does not shine and therefore it is only distinguished when it is projected on bright regions (nebulae or clusters).
Interstellar matter is mainly concentrated towards the plane of the galaxy, in the strip corresponding to the Milky Way; there you can see bright nebulas of diffuse character called nebulas. These nebulae are classified according to three types: (a) bright or emission nebulae, (b) reflection nebulae and (c) planetary nebulae.
Hydrogen appears both ionized and neutral; The bright nebulae are composed of ionized hydrogen and other ionized elements. Non-ionized (neutral) hydrogen is found in the spiral arms of the Milky Way and can be detected through radio waves.
If a boat is going East at 15mph and there is a water current going southeast at 45° then the boat is being drifted southward. So since the current is going at an angle then it has a x and y component. So Rx refers to the x-component force of the current and Ry refers to the y-component of the current, and |R| refers to the magnitude of these forces.
Answer:
Explanation:
Let T be the tension .
Applying newton's second law on the downward movement of the bucket
mg - T = ma
On the drum , a torque of TR will be acting which will create an angular acceleration of α in it . If I be the moment of inertia of the drum
TR = Iα
TR = Ia/ R
T = Ia/ R²
Replacing this value of T in the other equation
mg - T = ma
mg - Ia/ R² = ma
mg = Ia/ R² +ma
a ( I/ R² +m)= mg
a = mg / ( I/ R² +m)
mg - T = ma
mg - ma = T
mg - m x mg / ( I/ R² +m) = T
mg - m²g / ( I/ R² +m ) = T
mg - mg / ( 1 + I / m R² ) = T
b ) T = Ia/ R²
I = TR² / a
c ) Moment of inertia of hollow cylinder
I = 1/2 M ( R² - R² / 4 )
= 3/4 x 1/2 MR²
= 3/8 MR²
I / R² = 3/8 M
a = mg / ( I/ R² +m)
a = mg / ( 3/8 M + m )
T = Ia/ R²
= 3/8 MR² x mg / ( 3/8 M + m ) x 1 /R²
= 
Answer:
The heat loss per unit length is 
Explanation:
From the question we are told that
The outer diameter of the pipe is 
The thickness is
The temperature of water is
The outside air temperature is 
The water side heat transfer coefficient is 
The heat transfer coefficient is 
The heat lost per unit length is mathematically represented as
![\frac{Q}{L} = \frac{2 \pi (T - Ta)}{ \frac{ln [\frac{d}{D} ]}{z_1} + \frac{ln [\frac{d}{D} ]}{z_2}}](https://tex.z-dn.net/?f=%5Cfrac%7BQ%7D%7BL%7D%20%20%20%3D%20%5Cfrac%7B2%20%5Cpi%20%28T%20-%20Ta%29%7D%7B%20%5Cfrac%7Bln%20%5B%5Cfrac%7Bd%7D%7BD%7D%20%5D%7D%7Bz_1%7D%20%20%2B%20%20%5Cfrac%7Bln%20%5B%5Cfrac%7Bd%7D%7BD%7D%20%5D%7D%7Bz_2%7D%7D)
Substituting values
![\frac{Q}{L} = \frac{2 * 3.142 (363 - 263)}{ \frac{ln [\frac{0.104}{0.002} ]}{300} + \frac{ln [\frac{0.104}{0.002} ]}{20}}](https://tex.z-dn.net/?f=%5Cfrac%7BQ%7D%7BL%7D%20%20%20%3D%20%5Cfrac%7B2%20%2A%203.142%20%28363%20-%20263%29%7D%7B%20%5Cfrac%7Bln%20%5B%5Cfrac%7B0.104%7D%7B0.002%7D%20%5D%7D%7B300%7D%20%20%2B%20%20%5Cfrac%7Bln%20%5B%5Cfrac%7B0.104%7D%7B0.002%7D%20%5D%7D%7B20%7D%7D)

