Answer:
Work done required is 3567.2 J
Explanation:
Given :
Length of chain, l = 72 m
Mass of chain, M = 29 kg
Linear mass density of chain, μ =
=
= 0.40 kg/m
Let x be the length of the chain which lift to the top of the building.
Work done required to lift the chain is equal to the potential energy of the chain.
W = ∫μg (72 - x ) dx
Here g is acceleration due to gravity.
The limit of integration is from 0 to 14.
W = μg ( 72x - x²/2)
Substitute 0.40 kg/m for μ, 9.8 m/s² for g and 14 m for x in the above equation.
W = 
W = 3567.2 J
Fulcrum need to be positioned balanced with weight on both the sides following law of lever.
What is the physical law of the lever?
- It is the foundation for issues with weight and balance. According to this rule, a lever is balanced when the weight multiplied by the arm on one side of the fulcrum, which serves as the pivot point for the device, equals the weight multiplied by the arm on the opposing side.
- The lever is balanced, in other words, when the sum of the moments about the fulcrum is zero.
- The situation in which the positive moments (those attempting to turn the lever clockwise) equal the negative moments is known as this (those that try to rotate it counterclockwise).
- Moving the weights closer to or away from the fulcrum, as well as raising or lowering the weights, can alter the balance point, or CG, of the lever.
Learn more about the Fulcrum with the help of the given link:
brainly.com/question/16422662
#SPJ4
Answer:
d
= m× λ⇒ d = λ ×m×l / x
= 630×
m × 3×3m/ 45×
m
= 1.26×
m
Explanation:
the above calculation is based on Young’s double slit experiment where the two slits provide two coherent light sources which results either constructive interference or destructive interference when passing through a double slit.
-- Resistance can be useful among the population of a repressive government.
Although it can be dangerous for those who resist, it can also exert pressure
against the regime to alter its repressive practices.
-- Resistance can also be useful in electronic circuits. "Lumped" components with
known numerical values of resistance are used to divide voltage, limit current, and
dissipate controlled amounts of electrical energy.
Answer:
1. Electromagnetic waves travel in a vacuum whereas mechanical waves do not.
2. The ripples made in a pool of water after a stone is thrown in the middle are an example of mechanical wave. Examples of electromagnetic waves include light and radio signals.
3. Mechanical waves are caused by wave amplitude and not by frequency. Electromagnetic Waves are produced by vibration of the charged particles.
4. While an electromagnetic wave is called just a disturbance, a mechanical wave is considered a periodic disturbance.
Explanation: