The angular momentum is defined as,

Acording to this text we know for conservation of angular momentum that

Where
is initial momentum
is the final momentum
How there is a difference between the stick mass and the bug mass, we define that
Mass of the bug= m
Mass of the stick=10m
At the point 0 we have that,

Where l is the lenght of the stick which is also the perpendicular distance of the bug's velocity
vector from the point of reference (O), and ve is the velocity
At the end with the collition we have

Substituting




Applying conservative energy equation we have


Replacing the values and solving

Substituting
l=\frac{13}{0.54(9.8)}

ΔU =
-Wint
Consdier the work of of
interaction is W =m*g*h - equation -1
and the Potential energy U.
Final Potential energy Uf =0
, And the Initial Potential Energy Ui =m*g*h
<span>Now we will write the
equation for a Change in Potential energy ΔU,</span>
ΔU = Uf
- Ui
= 0-m*g*h
<span> ΔU = -m*g*h --Equation 2</span>
Now compare the both equation
<span>Wint = -ΔU</span>
we can rewrite the above
equation
ΔU =
-W.
<span>So our Answer is ΔU = -W. .</span>
<span> </span>
Answer:
We show added energy to a system as +Q or -W
Explanation:
The first law of thermodynamics states that, in an isolated system, energy can neither be created nor be destroyed;
Energy is added to the internal energy of a system as either work energy or heat energy as follows;
ΔU = Q - W
Therefore, when energy is added as heat energy to a system, we show the energy as positive Q (+Q), when energy is added to the system in the form of work, we show the energy as minus W (-W).
It will decay into Silicon-30. Because alpha particles are 2 protons and 2 neutrons with an atomic mass of 4, you minus sulfur's atomic number by 2 and get silicon. And the atomic mass is 34 - 4 which equals 30.