The change in the internal energy of the gas is 1.5×10∧3 J.
The internal energy of an ideal gas is directly proportional to the temperature of the gas:
ΔE = 3/2 × n × R × ΔT
ΔT = 320 K - 260 K
ΔT = 60 K; change of the temperature
n = 2.0 mol: amount of a monatomic ideal gas
R = 8.1 J/mol×K;the ideal gas constant
ΔE = 3/2 × 2 mol × 8.1 J/mol×K × 60 K
ΔE = 1500 J
ΔE = 1.5×10∧3 J; the internal energy of the gas
Isobaric process is a type of process in which the pressure of the system stays constant.
More about an isobaric process: brainly.com/question/28106078
#SPJ4
Answer:
I think the answer is boiling
Reaction of dissociation: Ag₂SO₄ → 2Ag⁺ + SO₄²⁻.
m(Ag₂SO₄) = 4 g.
V(Ag₂SO₄) = 1 l.
n(Ag₂SO₄) = m(Ag₂SO₄) ÷ M(Ag₂SO₄).
n(Ag₂SO₄) = 4 g ÷ 311,8 g/mol.
n(Ag₂SO₄) = 0,0128 mol.
n(Ag⁺) = 2 · 0,0128 mol = 0,0256 mol.
n(Ag₂SO₄) = n(SO₄²⁻) = 0,0128 mol.
c(Ag⁺) = n ÷ V = 0,0256 mol ÷ 1 l = 0,0256 mol/l.
Ksp = c(Ag⁺)² · c(SO₄²⁻).
Ksp = (0,0256 mol/l)² · 0,0128 mol/l.
Ksp = 8,3·10⁻⁶.
Explanation:
Since, the atomic number of nitrogen is 7 and its electronic distribution is 2, 5. So, in order to attain stability it needs to gain 3 electrons.
Hence, when it chemically combines another nitrogen atom then as both the atoms are non-metals. So, sharing of electrons will take place.
Also, there is no difference in electronegativity of two nitrogen atoms. Hence, compound formed
is non-polar covalent in nature.
Answer:
Option B. is the right answer.
Explanation:
Before developing a new technology, an engineer has to evaluate the advantages and disadvantages of the chemical used in order to clean water bodies. If the chemical has more disadvantages as compared to advantages, so its usage will be avoided while if the chemical does not harm the marine organisms of the ocean so it can be used for the purpose of cleaning. So we can say that first the engineer has to study the chemicals.