2H2O --> 2H2 + O2
The mole H2O:mole O2 ratio is 2:1
Now determine how many moles of O2 are in 50g: 50g × 1mol/32g = 1.56 moles O2
Since 1 mole of O2 was produced for every 2 moles of H2O, we need 2×O2moles = H2O moles
2×1.56 = 3.13 moles H2O
Finally, convert moles to grams for H2O:
3.13moles × 18g/mol = 56.28 g H2O
D) 56.28
Answer:
A
Explanation:
molarity=moles of solute/liter of solution
molarity=0.26/0.3
molarity=0.87molar
Answer: 1. Block
2. True ( I'm unsure. He arranged it according to mass, but he is credited for the periodic table)
3. Noble gasses
4. technetium
5. Alkaline earth metals
6. Number of protons
7. False
8. Not true: generally decreases as atomic number increases within a period
9. Argon
10. Four
11. False
12. False
Explanation:
Answer:K2X
Explanation: Valency can be defined as the combining power of an element. It is the valency that dictates the value an element will have when writing a chemical formula for its compound.
MgX is a compound of magnesium and an element X. The valency of magnesium in most of its compound is +2. Now for the 2 to have been absent in the chemical formula, this shows that the element X itself have a valency if -2 for the valencies of both to have canceled out.
Now considering the element potassium, it is an alkaline metal belonging to group 1 of the periodic table. Hence, it is expected that it has a valency of +1
Forming a compound with element X means there would be an exchange of valencies between the two. We have established that x has a valency of -2. The formula of the compound thus formed by exchanging the valencies of both element would be K2X
Answer:
13.5 g
Explanation:
This question is solved easily if we remember that the number of moles is obtained by dividing the mass into the atomic weight or molar mass depending if we are referring to elements or molecules.
Therefore, the mass of aluminum in the reaction will the 0.050 mol Al times the atomic weight of aluminum.
number of moles = n = mass of Al / Atomic Weight Al
⇒ mass Al = n x Atomic Weight Al = 0.050 mol x 27 g mol⁻¹
= 13.5 g
We have three significant figures in 0.050 and therefore we should have three significant figures in our answer.