Answer:
3.711 L
Explanation:
The formula you need to use is the following:

3.4L / 298 K = V2 / 273 K
V2 = 3.711 L
Answer: 10
Explanation:
The detailed solution is contained in the image attached. The molar mass of hydrated and anhydrous salts are obtained and the number of moles of hydrated and hydrated salts are equated. The masses of hydrated and anhydrous salts are gives in the question and are simply substituted accordingly. This can now be used to obtain the number of molecules of water of crystallization as required in the question.
Explanation:
Entropy of a reaction ΔS∘rxn is the degree of disoderliness in a system. Gases generally have a higher degree of disorder compared to liquids. Hence for the reaction 2H2(g)+O2(g) ⟶ 2H2O(l), the entropy decreases sice the reactants are in the gaseous state and the products is in the liquid state of matter
Answer: The concentration of hydroxide ions at this temperature is 
Explanation:
When an expression is formed by taking the product of concentration of ions raised to the power of their stoichiometric coefficients in the solution of a salt is known as ionic product.
The ionic product for water is written as:
![K_w=[H^+][OH^-]](https://tex.z-dn.net/?f=K_w%3D%5BH%5E%2B%5D%5BOH%5E-%5D)
![5.13\times 10^{-13}=[H^+][OH^-]](https://tex.z-dn.net/?f=5.13%5Ctimes%2010%5E%7B-13%7D%3D%5BH%5E%2B%5D%5BOH%5E-%5D)
As ![[H^+]=[OH^-]](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D%5BOH%5E-%5D)


The concentration of hydroxide ions at this temperature is 