The maximum mass of B₄C that can be formed from 2.00 moles of boron (III) oxide is 55.25 grams.
<h3>What is the stoichiometry?</h3>
Stoichiometry of the reaction gives idea about the relative amount of moles of reactants and products present in the given chemical reaction.
Given chemical reaction is:
2B₂O₃ + 7C → B₄C + 6CO
From the stoichiometry of the reaction, it is clear that:
2 moles of B₂O₃ = produces 1 mole of B₄C
Now mass of B₄C will be calculated by using the below equation:
W = (n)(M), where
- n = moles = 1 mole
- M = molar mass = 55.25 g/mole
W = (1)(55.25) = 55.25 g
Hence required mass of B₄C is 55.25 grams.
To know more about stoichiometry, visit the below link:
brainly.com/question/25829169
#SPJ1
Saturated hydrocarbons consists of C-C single bond whereas Unsaturated hydrocarbons consists C-C double/triple bond.
Given:
175 kilograms of Methane (CH4) to be synthesized into Hydrogen Cyanide (HCN)
The balanced chemical equation is shown below:
2 CH4<span> + 2 NH</span>3<span> + 3 O</span>2<span> → 2 HCN + 6 H</span>2<span>O
</span>
To calculate for the masses of ammonia and oxygen needed, our basis will be 175 kg CH4.
Molar mass:
CH4 = 16 kg/kmol
NH3 = 17 kg/kmol
O2 = 32 kg/kmol
mass of NH3 = 175 kg CH4 / 16 kg/kmol * (2/2) * 17 kg/kmol
mass of NH3 = 185.94 kg NH3 needed
mass of O2 = 175 kg CH4 / 16 kg/kmol * (3/2) * 32 kg/kmol
mass of O2 = 525 kg
mass of O = 525 kg / 32 kg/kmol * (1/2) * 16 kg/kmol
mass of O = 131.25 kg O
NH4+ and NH3 are an acid-conjugate base pair, since NH4+ is an acid, while NH3 is its conjugate base (since it is without the H+).
H2O and H3O+ can also be considered an acid-conjugate base pair, since H3O+ is an acid, while H2O would be its conjugate base. (But if only 1 answer is to be selected, it should be the NH4+ and NH3)
NH4+ and H3O+ are both acids, and both H2O and NH3 can be considered bases.