Answer:
-133.2 kJ
Explanation:
Let's consider the following balanced equation.
4 KClO₃(s) → 3 KClO₄(s) + KCl(s)
We can calculate the standard Gibbs free energy of the reaction (ΔG°rxn) using the following expression.
ΔG°rxn = 3 mol × ΔG°f(KClO₄(s)) + 1 mol × ΔG°f(KCl(s)) - 4 mol × ΔG°f(KClO₃(s))
ΔG°rxn = 3 mol × (-303.1 kJ/mol) + 1 mol × (-409.1 kJ/mol) - 4 mol × (-296.3 kJ/mol)
ΔG°rxn = -133.2 kJ
Answer is: <span>the exact ratio of oxygen to octane for is 12.5 : 1.
</span>Balanced chemical reaction: C₈H₁₈ + 25/2O₂ → 8CO₂ + 9H₂O or multiply by 2:
2C₈H₁₈ + 25O₂ → 16CO₂ + 18H₂O.
There same number of atoms on both side of balanced chemical reaction: eight carbon atoms, eighteen hydrogen atoms and twenty five oxygen atoms.
Answer:
Q = -33.6kcal .
Explanation:
Hello there!
In this case, according to the equation for the calculation of the total heat of reaction when a fixed mass of a fuel like ethane is burnt, we can write:

Whereas n stands for the moles and the other term for the enthalpy of combustion. Thus, for the required total heat of reaction, we first compute the moles of ethane in 3 g as shown below:

Next, we understand that -337.0kcal is the heat released by the combustion of 1 mole of ethane, therefore, to compute Q, we proceed as follows:

Best regards!
Answer:
a.option is the correct answer
Electron structure of sodium:
₁₁Na: 1s²2s²2p⁶3s¹