Answer: we can make observations directly by seeing, feeling, hearing, and smelling, but we can also extend and refine our basic senses with tools: thermometers, microscopes, telescopes, radar, radiation sensors, X-ray crystallography, mass spectroscopy, etc. And these tools do a better job of observing than we can!
Answer:
did u ever get the answer because i need it
Explanation:
Answer:
I don't know the answer to the first one, but I can answer the second question. <em>Cellular respiration </em><u><em>has carbon dioxide and water as waste products</em></u><em>.</em>
Explanation:
<em>Cellular respiration</em> does <u>not</u> form glucose & oxygen and doesn't occur in the chloroplast, but does form <em>ATP energy</em>, <em>carbon dioxide</em>, & <em>water</em> and the process occurs in <em>mitochondria</em>. Photosynthesis on the other hand forms glucose & oxygen and does occur in the chloroplast.
Answer:
El árbol de la vida o árbol universal de la vida es una metáfora, modelo y herramienta de investigación que se utiliza para explorar la evolución de la vida y describir las relaciones entre organismos, tanto vivos como extintos, como se describe en un famoso pasaje de El origen de las especies (1859) de Charles Darwin.2
Explanation:
Answer:
Neutrophils help fight infections because they ingest microorganisms and secrete enzymes that destroy them. A neutrophil is a type of white blood cell, a type of granulocyte and a type of phagocyte.
Explanation:
Neutrophils display adhesion glycoproteins on their surface to bind endothelial and subendothelial structures. They move randomly until they find a damaged site. Unless neutrophils are activated, endothelial cells do not tend to adhere. When inflammation mediators (IL-1, FNT) activate endothelial cells, they express P-selectin and E-selectin on the surface. The expression of glycoproteins and L-selectin cause the initial adhesion of the non-stimulated neutrophil to the activated endothelium, slowing it down by rolling it over the endothelium. Activated endothelial cells, opsonized particles, immune complexes, FEC-G, FEC-GM and chemoattractants produce factors that stimulate neutrophil activation. Expressing β2 integrin (endothelium adhesion molecule) Neutrophils expand and form pseudopods. Neutrophil activation also promotes degranulation, superoxide generation, and arachidonate metabolite production.