Answer:
v = 0.059 m/s
Explanation:
To find the final speed of Olaf and the ball you use the conservation momentum law. The momentum of Olaf and the ball before catches the ball is the same of the momentum of Olaf and the ball after. Then, you have:
(1)
m: mass of the ball = 0.400kg
M: mass of Olaf = 75.0 kg
v1i: initial velocity of the ball = 11.3m/s
v2i: initial velocity of Olaf = 0m/s
v: final velocity of Olaf and the ball
You solve the equation (1) for v and replace the values of all variables:

Hence, after Olaf catches the ball, the velocity of Olaf and the ball is 0.059m/s
Molecules in the solid phase have the least amount of energy, while gas particles have the greatest amount of energy. The temperature of a substance is a measure of the average kinetic energy of the particles.
Answer:
The maximum energy that can be stored in the capacitor is 6.62 x 10⁻⁵ J
Explanation:
Given that,
dielectric constant k = 5.5
the area of each plate, A = 0.034 m²
separating distance, d = 2.0 mm = 2 x 10⁻³ m
magnitude of the electric field = 200 kN/C
Capacitance of the capacitor is calculated as follows;

Maximum potential difference:
V = E x d
V = 200000 x 2 x 10⁻³ = 400 V
Maximum energy that can be stored in the capacitor:
E = ¹/₂CV²
E = ¹/₂ x 8.275 x 10⁻¹⁰ x (400)²
E = 6.62 x 10⁻⁵ J
Therefore, the maximum energy that can be stored in the capacitor is 6.62 x 10⁻⁵ J
Answer:
A. carbon and boron
Explanation:
Carbon and boron is not an alloy.
An allow forms between metals and metals using their huge electron could.
Carbon is a non-metal, boron is a also a non-metal
Two non-metals combining together does not make an alloy.
Iron, nickel, aluminum are all metals.