Answer:
1472.98 m
Explanation:
Data provided:
Speed of circular looping, v = 340 m/s
Acceleration, a = 8g
here,
g is the acceleration due to the gravity = 9.81 m/s²
Now,
the centripetal acceleration is given as,
r is the radius of the loop
on substituting the respective values, we get
or
r = 1472.98 m
Answer:
T
Explanation:
= Power of the bulb = 100 W
= distance from the bulb = 2.5 m
= Intensity of light at the location
Intensity of the light at the location is given as


= 1.28 W/m²
= maximum magnetic field
Intensity is given as


T
Answer:
& -y direction
& +y direction
Explanation:
From the question we are told that:
Speed of electron
+x direction
Earths magnetic field
+z direction
a)
Generally the equation for magnetic force
is mathematically given by

where




Magnitude & Direction
-y direction
b)
Generally the equation for magnitude and direction of the magnetic force on an electron. is mathematically given by


Magnitude & Direction
& +y direction
Answer:
a) 
b) 
c) 
d)
or 18.3 cm
Explanation:
For this case we have the following system with the forces on the figure attached.
We know that the spring compresses a total distance of x=0.10 m
Part a
The gravitational force is defined as mg so on this case the work donde by the gravity is:

Part b
For this case first we can convert the spring constant to N/m like this:

And the work donde by the spring on this case is given by:

Part c
We can assume that the initial velocity for the block is Vi and is at rest from the end of the movement. If we use balance of energy we got:

And if we solve for the initial velocity we got:

Part d
Let d1 represent the new maximum distance, in order to find it we know that :

And replacing we got:

And we can put the terms like this:

If we multiply all the equation by 2 we got:

Now we can replace the values and we got:


And solving the quadratic equation we got that the solution for
or 18.3 cm because the negative solution not make sense.
The correct answer to the question is: A) miles/hour and B) metre/ second.
EXPLANATION:
Before answering this question, first we have to understand speed.
The speed of a body is defined as the rate of distance travelled or the distance travelled by a body per unit time.
Hence, it is a derived quantity which is obtained from distance and time.
The unit of distance can be metre, miles, and the unit of time can be second, minutes or hour.
As speed is the distance covered per unit time, the perfect units will be miles/hour and metre/second.
Hence, the correct options are first and second.