1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vekshin1
2 years ago
7

At what location does gravity play a role in moving tectonic plates

Physics
2 answers:
Ksju [112]2 years ago
8 0
At the edge of the plates.
Lena [83]2 years ago
7 0

Answer:

In subduction of one plate over another on the basis of weight

Explanation:

When two plates moving and colliding, the plate with higher mass will subduct below the plate with lower weigh and lighter would remain above. generally continental types of plates are lighter in weight and oceanic plates are heavier.

Ex:- The collision of Eurasian plate and Indian plate. Indian plate is below and Eurasian plate above and formation of Himalaya

You might be interested in
During a plane showcase, a pilot makes circular "looping" with a speed equal to the sound speed (340 m/s). However, the pilot ca
Dmitriy789 [7]

Answer:

1472.98 m

Explanation:

Data provided:

Speed of circular looping, v = 340 m/s

Acceleration, a = 8g

here,

g is the acceleration due to the gravity = 9.81 m/s²

Now,

the centripetal acceleration is given as,

a=\frac{v^2}{r}

r is the radius of the loop

on substituting the respective values, we get

8\times9.81=\frac{340^2}{r}

or

r = 1472.98 m

5 0
3 years ago
What is the maximum value of the magnetic field at a distance of 2.5 m from a light bulb that radiates 100 W of single-frequency
Anvisha [2.4K]

Answer:

1.04\times 10^{-7} T

Explanation:

IP  = Power of the bulb = 100 W

r  = distance from the bulb = 2.5 m

I = Intensity of light at the location

Intensity of the light at the location is given as

I = \frac{P}{4\pi r^{2}}

I = \frac{100}{4(3.14) (2.5)^{2}}

I = 1.28 W/m²

B_{o} = maximum magnetic field

Intensity is given as

I = \frac{B_{o}^{2}c}{2\mu _{o}}

1.28 = \frac{B_{o}^{2}(3\times 10^{8})}{2(12.56\times 10^{-7})}

B_{o} = 1.04\times 10^{-7} T

7 0
3 years ago
Electrons and protons travel from the Sun to the Earth at a typical velocity of 3.83 ✕ 105 m/s in the positive x-direction. Thou
Leona [35]

Answer:

F=2.84*10^{-26}N  & -y direction

F=2.84*10^{-26}N & +y direction

Explanation:

From the question we are told that:

Speed of electron V_e=3.83 * 10^5 m/s +x direction

Earths magnetic field B_e=3.04 * 10^-^8 +z direction

a)

Generally the equation for magnetic force F_m is mathematically given by

F=q(V_e*B_e)

where

q=1.6*10^{-19}c\\\=i*\=z=-\=j

F=1.6*10^{-19}(3.83 * 10^5 m/s*3.04 * 10^-^8)

F=1.6*10^{-19}(3.83 * 10^5 m/s*3.04 * 10^-^8)

F=-2.84*10^{-26}N \=j

Magnitude & Direction

F=2.84*10^{-26}N  -y direction

b)

Generally the equation for magnitude and direction of the magnetic force on an electron. is mathematically given by

\=F'=-1.6*10^{-19}(3.83 * 10^5 m/s*3.04 * 10^-^8)

\=F'=-2.84*10^{-26}N \=j

Magnitude & Direction

F=2.84*10^{-26}N & +y direction

5 0
3 years ago
A 210 g block is dropped onto a relaxed vertical spring that has a spring constant of k = 2.0 N/cm. The block becomes attached t
Yuliya22 [10]

Answer:

a) W_{g}=mdx = 0.21 kg *9.8\frac{m}{s^2} 0.10m=0.2058 J

b) W_{spring}= -\frac{1}{2} Kx^2 =-\frac{1}{2} 200 N/m (0.1m)^2=-1 J

c) V_i =\sqrt{2 \frac{W_g + W_{spring}}{0.21 kg}}}=\sqrt{2 \frac{(1-0.2058)}{0.21 kg}}}=2.75m/s

d)  d_1 =0.183m or 18.3 cm

Explanation:

For this case we have the following system with the forces on the figure attached.

We know that the spring compresses a total distance of x=0.10 m

Part a

The gravitational force is defined as mg so on this case the work donde by the gravity is:

W_{g}=mdx = 0.21 kg *9.8\frac{m}{s^2} 0.10m=0.2058 J

Part b

For this case first we can convert the spring constant to N/m like this:

2 \frac{N}{cm} \frac{100cm}{1m}=200 \frac{N}{m}

And the work donde by the spring on this case is given by:

W_{spring}= -\frac{1}{2} Kx^2 =-\frac{1}{2} 200 N/m (0.1m)^2=-1 J

Part c

We can assume that the initial velocity for the block is Vi and is at rest from the end of the movement. If we use balance of energy we got:

W_{g} +W_{spring} = K_{f} -K_{i}=0- \frac{1}{2} m v^2_i

And if we solve for the initial velocity we got:

V_i =\sqrt{2 \frac{W_g + W_{spring}}{0.21 kg}}}=\sqrt{2 \frac{(1-0.2058)}{0.21 kg}}}=2.75m/s

Part d

Let d1 represent the new maximum distance, in order to find it we know that :

-1/2mV^2_i = W_g + W_{spring}

And replacing we got:

-1/2mV^2_i =mg d_1 -1/2 k d^2_1

And we can put the terms like this:

\frac{1}{2} k d^2_1 -mg d_1 -1/2 m V^2_i =0

If we multiply all the equation by 2 we got:

k d^2_1 -2 mg d_1 -m V^2_i =0

Now we can replace the values and we got:

200N/m d^2_1 -0.21kg(9.8m/s^2)d_1 -0.21 kg(5.50 m/s)^2) =0

200 d^2_1 -2.058 d_1 -6.3525=0

And solving the quadratic equation we got that the solution for d_1 =0.183m or 18.3 cm because the negative solution not make sense.

5 0
2 years ago
Select all that apply.
GenaCL600 [577]

The correct answer to the question is: A) miles/hour and B) metre/ second.

EXPLANATION:

Before answering this question, first we have to understand speed.

The speed of a body is defined as the rate of distance travelled or the distance travelled by a body per unit time.

Hence, it is a derived quantity which is obtained from distance and time.

The unit of distance can be metre, miles, and the unit of time can be second, minutes or hour.

As speed is the distance covered per unit time, the perfect units will be miles/hour and metre/second.

Hence, the correct options are first and second.

5 0
3 years ago
Read 2 more answers
Other questions:
  • Wich of the following celestial bodies is most likely to have many craters
    9·1 answer
  • Why do concave lenses always form virtual images?
    13·2 answers
  • What type of organization is used in a paragraph that lists similarities between two objects?
    12·1 answer
  • A rock is dropped from rest. How fast is it going after it has been falling for 9.2 s?
    14·1 answer
  • Friction exists only when two objects rub against each other.<br> A.True<br> B.False
    14·2 answers
  • A 1-kilogram object is thrown horizontally and a 2-kilogram object is dropped vertically at
    13·1 answer
  • Our verbal and nonverbal _a______ provides clues to our attitude on a given topic.
    9·1 answer
  • How many atoms are there
    14·1 answer
  • An object is moved 29 meters with a force of 289 N. what is the work done
    12·1 answer
  • 14. Which one of the following pictures shows the object that is the most dense? *
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!