The answer is A to B because the distance is rising rapidly as seen by the steep slope segment A to B had
Activation energy is the energy required by reactants to undergo chemical reaction and given products
Every reactant has some internal energy (sum of all kind of energy like kinetic energy, potential energy, mechanical energy, chemical energy etc). It needs some extra energy to undergo chemical reaction which is activation energy
All kinds of reaction whether exothermic or endothermic needs activation energy
Threshold energy = internal energy + activation energy
Answer:
The answer to your question is:
Explanation:
1 mol = 6.022 x 10 ²³ atoms
755 moles = x
x = 755 x 6.022 x 10 ²³ / 1 = 4.54 x 10 ²⁶ atoms
It is a simple stoichiometry problem. We have been given with balanced equation and 5.00 moles of HCl and have to calculate the moles of H2.
<span>From the balanced equation it is being clear that 2 moles of HCl are produced by 1 mole of H2. so, 1 mole of HCl will be produced by 1/2 moles of H2. So, the mole ratio of H2 and HCl is 1:2 </span>
<span>to calculate the moles of H2 for the given moles of HCl, multiply the moles of HCl by the mole ratio of H2 and HCl. </span>
<span>5.00 mole HCl x (1 mole H2/ 2 mole HCl) </span>
<span>= 2.50 mole H2 </span>
<span>so, to produce 5.00 moles of HCl, 2.50 moles of H2 are required.</span>
Answer:(a) 6CO2 (g) + 6H2O (l) → C6H12O6 (s) + 6O2 (g)
(b) 5.55*10^37photons
Explanation:
(a) Here we have to write a balanced thermochemical equation for formation of 1.00 mol of glucose.
In this question it has been given that Chlorophyll absorbs light in the 600 to 700 nm region,
1st we will write a chemical equation for biochemical process of photosynthesis is that CO2 and H2O form glucose (C6H12O6) and O2.
6CO2 (g) + 6H2O (l) → C6H12O6 (s) + 6O2 (g)
The heat change off the reaction can be calculated as,
={(1 mol)(6 mol) }- {(6 mol) [H2O]}
=[1 1273.3 kJ + 6(0)] - [6 (-39.5 kJ) + 6 (-285.840 kJ)]
= 2802.74 or 2802.7 kJ
Thus the balanced equation can be written as,
6CO2 (g) + 6H2O (l) → C6H12O6 (s) + 6O2 (g) = 2802.7 kJ for 1.00 mol of glucose.