Li(s) (answer A)
Li is strongest reducing agent because of the lowest standard reduction potential. when something is oxidized, it reduces another substance, becoming a reducing.Hence Lithium is strongest reducing agent. Reducing agent is stronger when it has a more positive oxidation potential.
The charge balance equation for an aqueous solution of H₂CO₃ that ionizes to HCO₃⁻ and CO₃⁻² is [HCO₃⁻] = 2[CO₃⁻²] + [H⁺] + [OH⁻]
<h3>What is Balanced Chemical Equation ?</h3>
The balanced chemical equation is the equation in which the number of atoms on the reactant side is equal to the number of atoms on the product side in an equation.
The equation for aqueous solution of H₂CO₃ is
H₂CO₃ → H₂O + CO₂
The charge balance equation is
[HCO₃⁻] = 2[CO₃⁻²] + [H⁺] + [OH⁻]
Thus from the above conclusion we can say that The charge balance equation for an aqueous solution of H₂CO₃ that ionizes to HCO₃⁻ and CO₃⁻² is [HCO₃⁻] = 2[CO₃⁻²] + [H⁺] + [OH⁻]
Learn more about the Balanced Chemical equation here: brainly.com/question/26694427
#SPJ4
Answer:
1 and 3.
Explanation:
The entropy measures the randomness of the system, as higher is it, as higher is the entropy. The randomness is associated with the movement and the arrangement of the molecules. Thus, if the molecules are moving faster and are more disorganized, the randomness is greater.
So, the entropy (S) of the phases increases by:
S solid < S liquid < S gases.
1. The substance is going from solid to gas, thus the entropy is increasing.
2. The substance is going from a disorganized way (the molecules of I are disorganized) to an organized way (the molecules join together to form I2), thus the entropy is decreasing.
3. The molecules go from an organized way (the atom are joined together) to a disorganized way, thus the entropy increases.
4. The ions are disorganized and react to form a more organized molecule, thus the entropy decreases.
1 molecule of NaCl contains 1 sodium ion (Na+), that's why if we have 3.0 moles of.
NaCl, we have 3.0 moles of Na+.
N(ions) = n(mol) · NA.
N(ions) = 3.0 moles · 6.02·1023 = 18.06 ·1023 ions.
<span>Density is a value for
mass, such as kg, divided by a value for volume, such as m3. Density is a
physical property of a substance that represents the mass of that substance per
unit volume. We calculate as follows:
PV = nRT
PV = mRT/ Molar mass
m/V = P(molar mass)/RT
Density = P(molar mass)/RT
Density = 2.0 ( 30.97 ) / 0.08206 ( 20 + 273.15) = 2.57 g/L <----First option</span>