Answer:
154 g
Explanation:
Step 1: Write the balanced decomposition equation
2 NaN₃(s) ⇒ 2 Na(s) + 3 N₂(g)
Step 2: Calculate the moles corresponding to 79.5 L of N₂ at STP
At STP, 1 mole of N₂ occupies 22.4 L.
79.5 L × 1 mol/22.4 L = 3.55 mol
Step 3: Calculate the number of moles of NaN₃ needed to form 3.55 moles of N₂
The molar ratio of NaN₃ to N₂ is 2:3. The moles of NaN₃ needed are 2/3 × 3.55 mol = 2.37 mol.
Step 4: Calculate the mass corresponding to 2.37 moles of NaN₃
The molar mass of NaN₃ is 65.01 g/mol.
2.37 mol × 65.01 g/mol = 154 g
Answer:
Explanation:
In this problem,
we will determine the enthalpy at the end of heat input and we get the condition is the super heated state.
so the entropy change will be due to latent heat at 150 kPa and also due to temperature change at the super heated state.
All the temperature, enthalpy is evaluated with the help of the steam table.
mass is calculated with the help of a specific volume at initial condition.
<u>see image below</u>
To calculate atomic mass, you have to take to weighted average of the isotopes' masses. What that means is M = RA*106 + (1 – RA)*104, where RA is relative abundance expressed in decimal form. If you simplify the right side of that equation, you get M = 2*RA + 104. Doing a little more algebra yields RA = (M –104)/2 = (104.4 – 104)/2 = 0.4 / 2 = 0.2, which is 20%. So the answer is B.
Answer:
Enzyme is carbonic anhydrase
Substrate is 
Turnover number is 
Explanation:
An enzyme is used by a living organism as a catalyst to perform a specific biochemical reaction.
A substrate is a molecule upon which an enzyme acts.
Turnover number refers to the number of substrate molecules transformed by a single enzyme molecule per minute. Here, the enzyme is the rate-limiting factor.
Here,
Enzyme is carbonic anhydrase
Substrate is 
Turnover number is 
The basic difference between thin layer chromatography (TLC) and paper chromatography (PC) is that, while the stationary phase in PC is paper, the stationary phase in TLC is a thin layer of an inert substance supported on a flat, unreactive surface. ... Paper chromatography is performed using paper.