<u>Hello and Good Morning/Afternoon</u>:
<em>Original Question: C₂H₅OH + __O₂ → __CO₂ + __ H₂O</em>
<u>To balance this equation</u>:
⇒ must ensure that there is an equal number of elements on both sides of the equation at all times
<u>Let's start balancing:</u>
- On the left side of the equation, there are 2 carbon molecule
⇒ but only so far one on the right side
C<em>₂H₅OH + __O₂ → 2CO₂ + __ H₂O</em>
- On the left side of the equation, there are 6 hydrogen molecules
⇒ but only so far two on the right side
C<em>₂H₅OH + __O₂ → 2CO₂ + 3H₂O</em>
- On the right side of the equation, there are 7 oxygen molecules
⇒ but only so far three on the left side
C<em>₂H₅OH + 3O₂ → 2CO₂ + 3H₂O</em>
<u>Let's check and make sure we got the answer:</u>
C<em>₂H₅OH + 3O₂ → 2CO₂ + 3H₂O</em>
<em> 2 Carbon ⇔ 2 Carbon</em>
<em> 6 Hydrogen ⇔ 6 Hydrogen</em>
<em> 7 Oxygen ⇔ 7 oxygen</em>
<u>Thefore the coefficients in order are</u>:
⇒ 1, 3, 2, 3
<u>Answer: 1,3,2,3</u>
Hope that helps!
#LearnwithBrainly<em> </em>
This question is incomplete, the complete question is;
The electric force due to a uniform external electric field causes a torque of magnitude 20.0 × 10⁻⁹ N⋅m on an electric dipole oriented at 30° from the direction of the external field. The dipole moment of the dipole is 7.5 × 10⁻¹² C⋅m.
What is the magnitude of the external electric field?
If the two particles that make up the dipole are 2.5 mm apart, what is the magnitude of the charge on each particle?
Answer:
- the magnitude of the external electric field is 5333.3 N/C
- the magnitude of the charge on each particle is 3.0 × 10⁻¹² C ≈ 3 nC
Explanation:
Given that;
Torque = 20.0 × 10⁻⁹ N⋅m
dipole moment = 7.5 × 10⁻¹²
∅ = 30°
The moment T of restoring couple is;
T = PEsin∅
E = T/Psin∅
we substitute
E = 20.0 × 10⁻⁹ N⋅m / (7.5 × 10⁻¹²) sin(30°)
E = 20.0 × 10⁻⁹ / 3.75 × 10⁻¹²
E = 5333.3 N/C
Therefore, the magnitude of the external electric field is 5333.3 N/C
The dipole moment is given by the expression;
p = ql
q = p / l
given that l = 2.5 mm = 0.0025 m
we substitute
q = 7.5 × 10⁻¹² / 0.0025
q = 3.0 × 10⁻¹² C ≈ 3 nC
Therefore, the magnitude of the charge on each particle is 3.0 × 10⁻¹² C ≈ 3 nC
Answer:

Explanation:
The momentum change is defined as:

Taking the downward motion as negative and the upward motion as positive, we have:

Replacing (2) and (3) in (1):

Answer:
mass of block=2.7 gm
Explanation:
concept: Density=mass/volume
given:ρ=2700 kg/m^3 and v=250 cm^3 (in cm^3 not in m^3)
=> v= convert cm^3 to m^3
there fore= 1 cm^3=1 cm*1 cm*1 cm
i.e 1 cm^3=1/100*1/00*1/100 m^3 => 1 cm^3=1/1000000 m^3
ρ=m/v
=>mass=ρ*volume
=>mass=2700*1/10^-6
=>mass=2.7*10^-3 kg =>2.7 gm