1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andrews [41]
3 years ago
6

Air at 1.3 bar, 500 K and a velocity of 40 m/s enters a nozzle operating at steady state and expands adiabatically to the exit,

where the pressure is 0.85 bar and velocity is 250 m/s. For air modeled as an ideal gas with k = 1.4, determine for the nozzle: (a) the temperature at the exit, in K, and (b) the percent isentropic nozzle efficiency.
Physics
1 answer:
klio [65]3 years ago
3 0

Given:

Pressure, P = 1.3 bar

Temperature, T = 500 K

velocity, v = 40 m/s

Pressure, P' = 0.85 bar

velocity, v' = 250 m/s

k = 1.4

Solution:

Now, we know that:

specific heat at constant pressure, C_{p} = 1.005 KJ/kgK

specific heat at constant volume, C_{p} = 1.005 KJ/kgK

k = \frac{C_{p}}{C_{V}}

(a) To calculate temperature at exit, T'

Using steady flow Eqn:

h + \frac{v^{2}}{2} = h' + \frac{v'^{2}}{2}                  (1)

where

h = enthalpy = C_{p}T

h'= C_{p}T'

Now, from eqn (1)-

h + \frac{v^{2}}{2} = h' + \frac{v'^{2}}{2}

C_{p}T + \frac{v^{2}}{2} = C_{p}T' + \frac{v'^{2}}{2}

1005\times 500 + \frac{40^{2}}{2} = 1005\times T' + \frac{v'^{2}}{2}

             

T' = 469.70 K

(b) To calculate % isentropic nozzle efficiency:

Using the relation:

\frac{T_{2s}}{T} = (\frac{P'}{P})^\frac{k - 1}{k}

⇒ \frac{T_{2s}}{500} = (\frac{0.85}{1.3})^\frac{1.4 - 1}{1.4}

{T_{2s} = 0.88 \times 500 = 442.84 K

Now,

% isentropic nozzle efficiency, \eta =\frac{T - T' }{T - T_{2s}}\times 100

%  \eta =\frac{500 - 469.70 }{500 - 442.84}\times100 = 53.00 %

\eta = 53.00 %

You might be interested in
What is an example of velocity?What is an example of velocity?
givi [52]
Speed with direction
5 0
3 years ago
Read 2 more answers
In your own words, explain Newton’s first law of motion.
Over [174]
Newton's first law of motion states that. an object on the rest or motion is stay the same unless external force applied on it.
5 0
3 years ago
Read 2 more answers
A spring with force constant of 59 N/m is compressed by 1.3 cm in a hockey game machine. The compressed spring is used to accele
Furkat [3]

Answer:

The puck moves a vertical height of 2.6 cm before stopping

Explanation:

As the puck is accelerated by the spring, the kinetic energy of the puck equals the elastic potential energy of the spring.

So, 1/2mv² = 1/2kx² where m = mass of puck = 39.2 g = 0.0392 g, v = velocity of puck, k = spring constant = 59 N/m and x = compression of spring = 1.3 cm = 0.013 cm.

Now, since the puck has an initial velocity, v before it slides up the inclined surface, its loss in kinetic energy equals its gain in potential energy before it stops. So

1/2mv² = mgh where h = vertical height puck moves and g = acceleration due to gravity = 9.8 m/s².

Substituting the kinetic energy of the puck for the potential energy of the spring, we have

1/2kx² = mgh

h = kx²/2mg

= 59 N/m × (0.013 m)²/(0.0392 kg × 9.8 m/s²)

= 0.009971 Nm/0.38416 N

= 0.0259 m

= 2.59 cm

≅ 2.6 cm

So the puck moves a vertical height of 2.6 cm before stopping

3 0
3 years ago
The energy that generates wind comes from what source?
Rudiy27

Answer:

we can say that wind energy is due to

D) Severe thunderstorms

Explanation:

As we know that wind energy is converted into kinetic energy of wind mills

This kinetic energy of wind mill is then converted into electrical energy using turbine

now we can consider here  energy conservation theory that energy is only converted from one form to other form

it neither be destroyed nor be created but it can transfer from one form to other form

So here we can say that wind energy is due to

D) Severe thunderstorms

3 0
3 years ago
If a substance is found to be reactive flammable soluble and explosive what observation is also a physical property
Ainat [17]

Answer:

  • <u><em>soluble</em></u>

Explanation:

Chemical properties only manifest when a chemical reaction occurs. Being reactive, flammable and explosive are chemical properties, because they involve chemical reactions: the substances are changed; the chemical bonds of some substances, called reactants, are broken, and the chemical bonds are created, forming other substances, called products.

Solubility is a<em> physical property</em> because during dissolution no new substances are formed. You can prove it when the solvent evaporates leaving behind the same original substance.

The the observation that the substance is <em>soluble</em> is describing a <em>physical property.</em>

3 0
3 years ago
Other questions:
  • An apparatus is used to prepare an atomic beam by heating a collection of atoms to a temperature T and allowing the beam to emer
    9·1 answer
  • A single proton has which electrical charge?
    11·2 answers
  • Which of the following statements is true?
    6·2 answers
  • A 60-watt light bulb carries a current of 0.5 ampere. The total charge passing through it in one hour is:
    14·1 answer
  • A piece of hot copper of mass 4.00 kg has it's temperature decrease by 36.90 ºC when it is placed in a body of water of unknown
    6·1 answer
  • Which form of energy is due to an object's motion?
    14·2 answers
  • Water is being boiled in an open kettle that has a 0.52-cm-thick circular aluminum bottom with a radius of 12.0 cm. If the water
    6·1 answer
  • A string is stretched between a fixed support and a pulley a distance 111 cm apart. The tension on the string is controlled by a
    14·1 answer
  • An object's movement around an internal axis is _____.
    12·1 answer
  • What do you have to do to become faster at running?
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!