Answer:
The correct answer is - 43%.
Explanation: The increase in CO2 between these two suggested periods is approximately 43%. Even though it is a natural process that the CO2 levels vary in the atmosphere, still this is not the same case nowadays. Nowadays, or rather in the past few decades, apart from the natural increase of CO2 in the atmosphere, it has seen a much more increased levels because of the human activity. The industrial facilities and the vehicles, the cutting of the forests and burning the wood (there's both release of CO2 from the burning of the trees and loss of natural accumulator of the CO2), are just some of the more important human activities that contribute to a significant rise in the CO2 levels.
Answer:
6000 cm<em>²</em>
Explanation:
let width of rectangle = 
Using Pythagorean theorem,
+<em> 50² = 130²</em>
<em />
<em> = 130² - 50² </em>
<em />
<em> = 14400</em>
<em />
<em>= 120 cm</em>
area of rectangle <em>=</em> length x width
<em>=</em> <em>120 x 50</em>
<em>= 6000 cm²</em>
The distance a dropped object falls, with gravity and no air resistance:
Distance = (1/2) (acceleration) (falling time)²
Without air resistance, the horizontal motion has no effect on the fall.
Acceleration of Earth gravity = 9.8 m/s²
Distance = (1/2) (acceleration) (falling time)²
Distance = (1/2) (9.81 m/s²) (3.0 s)²
Distance = (0.5) x (9.81 m/s²) x (9.0 s²)
Distance = (0.5 x 9.81 x 9.0) (m-s² / s²)
Distance = 44.15 meters
We don't care how fast the bird was flying horizontally. It doesn't change anything. (It DOES determine how far ahead of the drop point the clam hits the ground. Most problems like this ask for that distance. This one didn't.)
The answer to the question you have asked is 1.8 miles east.
This is a problem that would be a good test of your understanding rather than your ability to work the formulas. 5m/s² means that the velocity increase each second is 5 m/s. So 4 s of that acceleration would increase the speed (in m/s) from 20 to 40. (Speed increase each second is 5 m/s. We need an increase of 20 m/s.)
Since the acceleration is uniform during those 4 s, we can use the simple average speed of 30 m/s. 30 m/s * 4 s = 120 m.