Answer:
The answer to your question is: C. The specific latent heat of fusion
Explanation:
A. The specific latent heat of vaporization Specific latent heat of vaporization indicates the transition from liquid to vapor, but we are not looking for this definition. This answer is wrong.
B. The specific heat
indicates the amount of heat needed to increase the temperature of water 1°C, so this answer is wrong.
C. The specific latent heat of fusion
. This heat indicate the transition from solid ie to liquid, so this is the right answer.
D. The internal energy measures the energy of the molecules of a substance, so this answer is wrong.
<span> Au</span>₂(SeO₄)₃
O = -2 × 4 = -8
Se = + 6
So,
(+6 - 8) = -2
Means (SeO₄) contains -2 charge, Now multiply -2 by 3
-2 ₓ 3 = -6
Means,
Au₂ + (-6) = 0
Au₂ = +6
Or,
Au = 6 / 2
Au = +3
Result:
Au = +3
Se = +6
O = -2
Ni(CN)₂
Cyanide (CN⁻) contains -1 charge,
So,
N = -3
C = +2
Then,
Ni + (-1)₂ = 0
Ni - 2 = 0
Or,
Ni = +2
Result:
N = -3
C = +2
Ni = +2
Answer:
a) heat it from 23.0 to 78.3
q = (50.0 g) (55.3 °C) (2.46 J/g·°C) =
b) boil it at 78.3
(39.3 kJ/mol) (50.0 g / 46.0684 g/mol) =
c) sum up the answers from the two calculations above. Be sure to change the J from the first calc into kJ
Explanation:
Ok so I got the answer,and I’m confident it’s right.The answer is I=0