Answer:
E = 3 × 10¹⁰ J
Explanation:
Mass, m = 100 kg
We need to find energy made by the loss of 100 kg of mass. The formula between the mass and energy is given by :
E = mc²
Where c is speed of light
Putting all the values, we get :
E = 100 kg × (3×10⁸ m/s)²
= 3 × 10¹⁰ J
So, the required energy is 3 × 10¹⁰ J.
Answer:
The correct answer is 1 glycogen degradation would slow down.
Explanation:
Glycogen is the principle storage polysaccharide present in the liver and muscle of human body.
Glycogen contain both alpha-1,4-glycosidic linkage and alpha -1,6-glycosidic linkage.During glycogenolysis some glucose residues are transferred from branch point of the glycogen to its end and thereafter a single glucose residue is linked to the branch point of glycogen by alpha-1,6-glycosidic linkage.
The alpha-1,6-glycosidic linked glucose of glycogen is finally get separated from glycogen by the catalytic activity of alpha-1,6-glycosidase enzyme in the final step of glycogenolysis.
According to the given question if there is no alpha-1,6-glycosidic linkage in the glycogen then glycogen degradation will slow down.
Answer: it has 2 parts
Explanation:
Firstly, plant cells have a cell wall that surrounds the cell membrane, whereas animal cells do not. Plant cells also possess two organelles that animal cells lack: chloroplasts and a large central vacuole
Explanation:
Cr=35.880/51=0.73≈0.7
P=21.076/31=0.67≈0.7
O=43.543/16=2.71
Divide each by 0.7 u get
Cr=1 ,P =1, O=4
Empirical formula is CrPO4