Answer:
4.17L
Explanation:
V1 = 10L
V2 =?
P1 = 500torr
P2 = 1200torr
Boyle's law states that at constant temperature, the volume of a gas is inversely proportional to its pressure.
P1V1 = P2V2
V2 = ( P1 * V1 ) / P2
V2 = 4.17L
The new volume of the gas is 4.17L
Answer:
A liquid-fueled rocket has two liquids (liquids are good because of the density, they need less space than a gas to be stored), such that these liquids are called the fuel and the oxidizer.
These liquids are injected into a system that leads to a combustion chamber, where the liquids are mixed (we need to mix the fuel with the oxidizer to enable the combustion of the fuel) and burned to produce thrust.
Some common examples of oxidizers are liquid oxygen, which may be combined with fuels like liquid hydrogen, liquid methane, kerosene and hydrazine.
Other oxidizers are liquid fluorine (which also can be combined with the fuels liquid hydrogen and hydrazine), nitrogen tetroxide (which can be combined whit kerosene, hydrazine and other fuels) and FLOX-70, which can only be combined with kerosene.
The "most commonly used" may depend on the country and the type of liquid propellant ( petroleum, cryogens, and hypergols)
Such that the most common oxidizer may be liquid oxygen, and the most common fuel the kerosene.
To determine the volume of both concentration of vinegar, we need to set up two equations since we have two unknowns.
For the first equation, we do a mass balance:
mass of 100% vinegar + mass of 13% vinegar = mass of 42% vinegar
Assuming they have the same densities, then we can write this equation in terms of volume.
V(100%) + V(13%) = V(42%)
we let x = V(100%)
y = V(13%)
x + y = 150
For the second equation, we do a component balance:
1.00x + .13y = 150(.42)
x + .13y = 63
The two equations are
x + y = 150
x + .13y = 63
Solving for x and y,
x = 50
y = 100
Therefore, you need to mix 50 mL of the 100% vinegar and 100 mL of the 13% vinegar.
Answer:
There are 0,2 moles of gas that ocuppy the container.
Explanation:
We apply the formula of the ideal gases, we clear n (number of moles); we use the ideal gas constant R = 0.082 l atm / K mol. Firs we convert the unit of temperature in Celsius into Kelvin:
0°C= 273 K ------> 45,6 °C= 273 + 45, 6= 318, 6 K
PV= nRT ---> n= PV/RT
n= 1,48 atm x 3,45 L /0.082 l atm / K mol x 318,6 K
n= 0,195443479 mol
The atomic number increases moving left to right across a period and subsequently so does the effective nuclear charge. Therefore, moving left to right across a period the nucleus has a greater pull on the outer electrons and the atomic radii decreases.