The solution would be like
this for this specific problem:
<span>(78.6 kJ) / (92.0 g /
(46.0684 g C2H5OH/mol)) = 39.4 kJ/mol </span>
<span>39.3 </span>
So the approximate molar
heat of vaporization of ethanol in kJ/mol is 39.3.
I hope this answers your question.
Explanation:
The dipoles in CO are in opposite directions so they cancel each other out, although CO₂ has polar bonds, it is a nonpolar molecule. Therefore, the only intermolecular forces are London dispersion forces. Water (H2O) has hydrogen bond present which is a polar bond which has a high intermolecular force.
Water which has high intermolecular force will require more energy that is a higher temperature to overcome these attractions and are pulled together tightly to form a solid at higher temperatures, so their freezing point is higher.
As the temperature of a liquid decreases, the average kinetic energy of the molecules decreases and they move more slowly.
CO with lower intermolecular forces will not solidify until the temperature is lowered further.
Gunpowder is a heterogenous mixture,
Reason : the composiotion of the mixture is not uniform throughout, the mixture can be separated by a suitable method , and finally , it composes of charcoal, sulfur and potassium nitrate which is not homogeneous mixture.
Ammonia compounds are bases in aqueous solution according to brønsted–lowry theory.
<h3>What are bases?</h3>
A base is a substance that can neutralize the acid by reacting with hydrogen ions.
Ammonia compounds are based on an aqueous solution according to brønsted–lowry theory because the water molecule donates a hydrogen ion to the ammonia, it is the Brønsted-Lowry acid, while the ammonia molecule which accepts the hydrogen ion is the Brønsted-Lowry base. Thus, ammonia acts as a base in both the Arrhenius sense and the Brønsted-Lowry sense.
Hence, ammonia compounds are based on an aqueous solution according to brønsted–lowry theory.
Learn more about the bases here:
brainly.com/question/16387395
#SPJ1
Answer:
i am unique and have a specific number in the periodic table