Answer:
The water lost is 36% of the total mass of the hydrate
Explanation:
<u>Step 1:</u> Data given
Molar mass of CuSO4*5H2O = 250 g/mol
Molar mass of CuSO4 = 160 g/mol
<u>Step 2:</u> Calculate mass of water lost
Mass of water lost = 250 - 160 = 90 grams
<u>Step 3:</u> Calculate % water
% water = (mass water / total mass of hydrate)*100 %
% water = (90 grams / 250 grams )*100% = 36 %
We can control this by the following equation
The hydrate has 5 moles of H2O
5*18. = 90 grams
(90/250)*100% = 36%
(160/250)*100% = 64 %
The water lost is 36% of the total mass of the hydrate
<span>Avogadro's number
represents the number of units in one mole of any substance. This has the value
of 6.022 x 10^23 units / mole. This number can be used to convert the number of
atoms or molecules into number of moles. We do as follows:
</span>10 mol NH3 ( 6.022 x 10^23 molecules / 1 mol ) = 6.022x10^24 molecules NH3
V = \sqrt{x} 3 * R * T / MW
V = RMS velocity
R = 8.3145 J/K*mole
T = Temperature K
MW = Molecular weigh in Kg
So to balance an equation, you need to get the same amount of each type of element on either side of the --> . So you pretty much are given the subscripts in the equations and you need to add coefficients (just normal numbers) in front of any formula that needs it, keeping anything balance.

turns into

These coefficient numbers are the molar ratios, so 2 moles of KCl3 for every 3 moles of O2 so 1. 3:2
Then you can use these ratios of find out how many moles of one thing are needed if you are given the amount of another.

and use cross multiplication to solve for whatever you don't know
<span />