Answer:
The reaction of one mole of oxygen (O2) releases 445 kJ of energy.
Explanation:
Firstly, the reaction is exothermic since the sign of enthalpy change ΔH is negative.
The balanced equation: CH₄(g) + 2O₂(g) → CO₂(g) + 2H₂O(l): ΔH = −890 kJ,
Shows that 1 mole of CH₄ react with 2 moles of oxygen and releases 890 kJ.
So, every choice says that absorb is wrong (choice 1& 3).
Choice no. 4 is wrong since it says that 2 moles of methane releases 890 kJ, because only one mole release this amount of energy.
So, the right choice is The reaction of one mole of oxygen (O2) releases 445 kJ of energy.
Increasing the temperature increases reaction rates because of the disproportionately large increase in the number of high energy collisions. It is only these collisions (possessing at least the activation energy for the reaction) which result in a reaction.
Answer:
V₂ =279.4 cm³
Explanation:
Given data:
Initial volume = 260 cm³
Initial temperature = 22.0°C
Final temperature = 44.0°C
Final volume = ?
Solution;
22.0°C (22+ 273 = 295k)
44.0°C(44+273 = 317k)
Formula:
According to Charles's law
V₁/T₁ = V₂/T₂
Now we will put the values in formula:
V₂ = V₁×T₂ / T₁
V₂ = 260 cm³ × 317k / 295k
V₂ = 82420 cm³. k / 295k
V₂ =279.4 cm³
There are 12 hydrogen atoms are in a fructose.
Answer:
A.Cells
Explanation:
bugs eggs and bones aren't the smaller than cells.