Answer:
The answer to your question is a) N₂ b) 3.04 g of NH₃
Explanation:
Data
mass of H₂ = 2.5 g
mass of N₂ = 2.5 g
molar mass H₂ = 2.02 g
molar mass of N₂ = 28.02 g
molar mass of NH₃ = 17.04 g
Balanced chemical reaction
3H₂ + 1 N₂ ⇒ 2NH₃
A)
Calculate the theoretical yield 3H₂ / N₂ = 3(2.02) / 28.02 = 0.22
Calculate the experimental yield H₂/N₂ = 2.5/2.5 = 1
Conclusion
The limiting reactant is N₂ (nitrogen) because the experimental proportion was higher than the theoretical proportion.
B)
28.02 g of N₂ -------------------- (2 x 17.04) g of NH₃
2.5 g of N₂ -------------------- x
x = (2.5 x 2 x 17.04) / 28.02
x = 85.2 / 28.02
x = 3.04 g of NH₃
Answer:
4.13×10²⁷ molecules of N₂ are in the room
Explanation:
ideal gases Law → P . V = n . R . T
Pressure . volume = moles . Ideal Gases Constant . T° K
T°K = T°C + 273 → 20°C + 273 = 293K
Let's determine the volume of the room:
18 ft . 18 ft . 18ft = 5832 ft³
We convert the ft³ to L → 5832 ft³ . 28.3L / 1 ft³ = 165045.6 L
1 atm . 165045.6 L = n . 0.082 L.atm/mol.K . 293K
(1 atm . 165045.6 L) / 0.082 L.atm/mol.K . 293K = n
6869.4 moles of N₂ are in the room
If we want to find out the number of molecules we multiply the moles by NA
6869.4 mol . 6.02×10²³ = 4.13×10²⁷ molecules
I'm not writing random things to reach the 20 character requirement so I can tell you that Magnesium has the least amount of atoms.
The atomic number of an atom is determined by the number of protons it has..
It is also the whole number shown on the periodic table
D - for example, Potassium has 1 electron on its outer shell, whilst Chlorine has 7 electrons on its outer shell. Potassium loses one electron to Chlorine so that each of them have a full outer shell. This would form Potassium Chloride.