1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
coldgirl [10]
4 years ago
13

According to Archimedes’ principle, the mass of a floating object equals the mass of the fluid displaced by the object. Use this

principle to solve the following problems. (a) A wooden cylinder 30.0 cm high floats vertically in a tub of water (density 1:00 g/cm3). The top of the cylinder is 13.5 cm above the surface of the liquid. What is the density of the wood? (b) The same cylinder floats vertically in a liquid of unknown density. The top of the cylinder is 18.9 cm above the surface of the liquid. What is the liquid density? (c) Explain why knowing the length and width of the wooden objects is unnecessary in solving Parts (a) and (b). 2.15.
Physics
1 answer:
e-lub [12.9K]4 years ago
6 0

Answers:

a) \rho_{cylinder}= 0.55 g/cm^{3}

b) \rho_{liq}= 1.48 g/cm^{3}

c) When we divided both volumes (sumerged and displaced) the factor \pi r^{2} is removed during calculations.

Explanation:

a) According to <u>Archimedes’ Principle:</u>

<em>A body totally or partially immersed in a fluid at rest, experiences a vertical upward thrust equal to the mass weight of the body volume that is displaced.</em>

In this case we have a wooden cylinder floating (partially immersed) in water. <u>This object does not completely fall to the bottom because the net force acting on it is zero, this means it is in equilibrium.</u>  This is due to Newton’s first law of motion, that estates if a body is in equilibrium the sum of all the forces acting on it is equal to zero.

Hence:

W_(cylinder)=B (1)

Where:

W_(cylinder)=m.g is the weight of the wooden cylinder, where m is its mass and g gravity.

B is the Buoyant force, which is the force the fluid (water in this situation) exert in the submerged cylinder, and is directed upwards.

We can rewrite (1) as follows:

m_{cylinder}g=m_{water}g (2)

On the other hand, we know density \rho establishes a relationship between the mass of a body andthe volume it occupies. Mathematically is expressed as:

\rho=\frac{m}{V} (3)

isolating the mass:

m=\rho V    (4)

Now we can express (2) in terms of the density and the volume of cylinder and water:

\rho_{cylinder} V_{cylinder} g=\rho_{water} V_{water} g (5)

In this case V_{water} is the volume of water displaced by the wooden cylinder (remembering Archimedes's Principle).

At this point we have to establish the total volume of the cylinder and the volume of water displaced by the sumerged part:

V_{cylinder}=\pi r^{2} h (6)

Where r is the radius and h=30 cm the total height of the cylinder.

V_{water}=\pi r^{2} (h-h_{top}) (7)

Where h_{top}=13.5 cm is the height of the top of the cylinder above the surface of water and (h-h_{top}) is the height of the sumerged part of the cylinder.

Substituting (6) and (7) in (5):

\rho_{cylinder} \pi r^{2} h g=\rho_{water} \pi r^{2} (h-h_{top}) g (8)

Clearing \rho_{cylinder}:

\rho_{cylinder}=\frac{\rho_{water}(h-h_{top})}{h} (9)

Simplifying;

\rho_{cylinder}=\rho_{water}(1-\frac{h_{top}}{h} (10)

Knowing \rho_{water}=1g/cm^{3}:

\rho_{cylinder}=1g/cm^{3}(1-\frac{13.5 cm}{30cm}) (11)

\rho_{cylinder}= 0.55 g/cm^{3} (12) This is the density of the wooden cylinder

b) Now we have a different situation, we have the same wooden cylinder, which density was already calculated (\rho_{cylinder}= 0.55 g/cm^{3}), but the density of the liquid \rho_{liq} is unknown.

Applying again the Archimedes principle:

\rho_{cylinder} V_{cylinder} g = \rho_{liq} V_{liq} g (13)

Isolating \rho_{liq}:

\rho_{liq}= \frac{\rho_{cylinder} V_{cylinder}}{V_{liq}} (14)

Where:

V_{cylinder}=\pi r^{2} h

V_{liq}=\pi r^{2} (h-h_{top})

Then:

\rho_{liq}= \frac{\rho_{cylinder} \pi r^{2} h}{\pi r^{2} (h-h_{top})} (15)

\rho_{liq}= \frac{\rho_{cylinder} h}{h-h_{top}} (16)

\rho_{liq}= \frac{0.55 g/cm^{3} (30 cm)} {30 cm - 18.9 cm} (17)

\rho_{liq}= 1.48 g/cm^{3} (18) This is the density of the liquid

c) As we can see, it was not necessary to know the radius of the cylinder (we did not need to knoe its length and width), we only needed to know the part that was sumerged and the part that was above the surface of the liquid.

This is because in this case, when we divided both volumes (sumerged and displaced) the factor \pi r^{2} is removed during calculations.

You might be interested in
Pretend you're
vredina [299]

Answer

What type of phases?

4 0
3 years ago
How long does a lunar eclipse last? A)seconds B)Minutes C)Days D) Weeks
bonufazy [111]
Well, it happens a few weeks ahead, then for a total of 3 hours and 40 minutes.
3 0
3 years ago
Explain why the shortening velocity became slower as the load became heavier in this experiment. how well did the results compar
valkas [14]
<span>The shortening velocity refers to the speed of the contraction from the muscle shortening while lifting a load. Maximal shortening velocity is only attained with a minimal load. With a light load, the shortening velocity is at its Maximal shortening velocity. When the weight is heavy, the speed in which the muscle lifts the weight decreases in speed at a slower velocity.</span>
6 0
3 years ago
The core of a 400 Hz aircraft transformer has a net cross-sectional area of 13 cm2. The maximum flux density is 0.9 T, and there
jenyasd209 [6]

Answer:

32.76 Volt

Explanation:

frequency, f = 400 Hz

Area of crossection, A = 13 cm²

Maximum flux density, B = 0.9 tesla

Number of turns in secondary coil, N = 70

Let the maximum induced voltage is e.

According to the Faraday's law of electromagnetic induction, the induced emf is equal to the rate of change of magnetic flux.

e = dФ/dt

e=\frac{NBA}{t}

Time is defined as the reciprocal of frequency.

So, e = N B A f

e = 70 x 0.9 x 13 x 10^-4 x 400

e = 32.76 volt

4 0
3 years ago
Describe what happens to the system inside of a refrigerator or freezer in terms of heat transfer, work, and conservation of ene
Over [174]

Answer: A. Work is done on the system and heat is transferred from the system for a net decrease in internal energy.

Explanation:

A refrigerator is a device which dispenses heat from the close system to a warmer area or in the surrounding. By dispensing the heat the internal temperature of the refrigerator drops. The system of refrigerator violates the second law of thermodynamics. As it performs the work to cool the region instead of heating the region. The work is done on the system and the internal energy decreases and the heat energy is liberated to the surrounding area. A refrigerator is an open system.

6 0
3 years ago
Other questions:
  • Using the “On the Highway” distance time graph, what is the average velocity of the car? (use slope = rise/ run OR v = d/t)
    11·1 answer
  • At the starting gun, a runner accelerates at 1.9 m/s2 for 5.2 s. The runner’s acceleration is zero for the rest of the race. Wha
    6·2 answers
  • An 80.0 kg man sits on a scale in his car. The car is driving at a speed of 11.0 m/s right as it passes over the top of a semici
    5·1 answer
  • What two simple machines make up an axe?
    11·1 answer
  • The amplitude of a wave is
    10·1 answer
  • Dibuja la gráfica de calentamiento de un kilogramo de plomo que se encuentra inicialmente a 70ºC y pasa a una temperatura final
    14·1 answer
  • What is types of motion ​
    13·2 answers
  • 1. Choose the statement that does not accurately describe observations
    12·2 answers
  • 6. A car accelerates from rest to 5m/s in 20 s. The force from the engine is 2000N. The force of air resistance and friction act
    8·1 answer
  • ¿Qué trabajo hace una fuerza de 110 N cuando mueve su punto de aplicación 20 mt en su misma dirección? *
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!