1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nookie1986 [14]
3 years ago
10

A large asteroid of mass 33900 kg is at rest far away from any planets or stars. A much smaller asteroid, of mass 610 kg, is in

a circular orbit about the first at a distance of 146 meters as a result of their mutual gravitational attraction. What is the speed of the second asteroid? Now suppose that the first and second asteroids carry charges of 1.18 C and -1.18 C, respectively. How fast would the second asteroid have to be moving in order to occupy the same circular orbit as before?
Physics
1 answer:
klemol [59]3 years ago
6 0

Answer:

a) 1.2*10^-4 m/s

b) 375 m/s

Explanation:

I assume the large asteroid doesn't move.

The smaller asteroid is affected by an acceleration determined by the universal gravitation law:

a = G * M / d^2

Where

G: universal gravitation constant (6.67*10^-11 m^3/(kg*s^2))

M: mass of the large asteroid (33900 kg)

d: distance between them (146 m)

Then:

a = 6.67*10^-11 * 33900 / 146^2 = 10^-10 m/s^2

I assume the asteroid in a circular orbit, in this case the centripetal acceleration is:

a = v^2/r

Rearranging:

v^2 = a * r

v = \sqrt{a * r}

v = \sqrt{10^-10 * 146} = 1.2*10^-4 m/s

If the asteroids have electric charges of 1.18 C and -1.18 C there will be an electric force of:

F = 1/(4π*e0)*(q1*q2)/d^2

Where e0 is the electrical constant (8.85*10^-12 F/m)

F = 1/(4π*8.85*10^-12) (-1.18*1.18)/ 146^2 = -587 kN

On an asteroid witha mass of 610 kg this force causes an acceleration of:

F = m * a

a = F / m

a = 587000 / 610 = 962 m/s^2

With the electric acceleration, the gravitational one is negligible.

The speed is then:

v = \sqrt{962 * 146} = 375 m/s

You might be interested in
A 1kg cart slams into a stationary 1kg cart at 2 m/s. The carts stick together and move forward at a speed of 1 m/sl. Determine
finlep [7]

Answer:

No, it is not conserved

Explanation:

Let's calculate the total kinetic energy before the collision and compare it with the total kinetic energy after the collision.

The total kinetic energy before the collision is:

K_i = K_1 + K_2 = \frac{1}{2}mv_1^2 + \frac{1}{2}mv_2^2=\frac{1}{2}(1 kg)(2 m/s)^2+\frac{1}{2}(1 kg)(0)^2=2 J

where m1 = m2 = 1 kg are the masses of the two carts, v1=2 m/s is the speed of the first cart, and where v2=0 is the speed of the second cart, which is zero because it is stationary.

After the collision, the two carts stick together with same speed v=1 m/s; their total kinetic energy is

K_f = \frac{1}{2}(m_1+m_2)v^2=\frac{1}{2}(1 kg+1kg)(1 m/s)^2=1 J

So, we see that the kinetic energy was not conserved, because the initial kinetic energy was 2 J while the final kinetic energy is 1 J. This means that this is an inelastic collision, in which only the total momentum is conserved. This loss of kinetic energy does not violate the law of conservation of energy: in fact, the energy lost has simply been converted into another form of energy, such as heat, during the collision.

3 0
3 years ago
Olympic gold medalist Michael Johnson runs one time around the track 400 meters in 38 seconds what is his displacement what is h
Sveta_85 [38]
Displacement = 0, assuming that he runs back to original position
Average velocity is displacement/ time, since displacement =0, velocity is also 0
8 0
3 years ago
A yellow train of mass 100 kg is moving at 8 m/s toward an orange train of mass 200 kg traveling in the opposite direction on th
Serhud [2]

The initial momentum of the yellow and the orange train is 1000kgm/s.

Momentum is the product of the mass and velocity of any object.

Momentum is denoted by P.

Momentum P = mv , where m = mass and v = velocity.

<h3>Given:</h3>

Mass of the orange train = 200kg

Velocity of the orange train = 1m/s

So, the momentum of the orange train will be,

                            ∴    P = mv

                                  P = 200 x 1

                                  P = 200 kgm/s

∴   The initial momentum of the orange train is 200kgm/s.

Mass of the yellow train = 100kg

Velocity of the yellow train = 8m/s

So, the momentum of the yellow train will be,

                            ∴    P = mv

                                  P = 100 x 8

                                  P = 800 kgm/s

∴ The initial momentum of the yellow train is 800kgm/s.

Therefore, the initial momentum of the yellow and the orange train is 1000kgm/s.

Learn more about momentum here:

brainly.com/question/25849204

#SPJ1

5 0
2 years ago
1. What is the pull that all objects exert on each other?
Andrei [34K]

Answer:

Im pretty sure 1 is gravity, 2 is force

Explanation:

8 0
3 years ago
Please I need the answer right now will mark you brainliest ​
Dmitrij [34]

Answer:

Explanation:

what do u need help with

3 0
2 years ago
Read 2 more answers
Other questions:
  • The drawing shows a side view of a swimming pool. The pressure at the surface of the water is atmospheric pressure. The pressure
    7·2 answers
  • A rockets thruster provides a 300 N force to the right . Air resistance causes a 130 N to the left what is the net force?
    7·1 answer
  • A disc initially at rest experiences an angular acceleration of 3.11 rad/s for a time of 15.0 s. What will the angular speed of
    13·1 answer
  • What mirror diameter gives 0.1 arc second resolution for infrared radiation of wavelength 2 micrometers?
    14·1 answer
  • Reacting molecules must hit each other with sufficient energy in order to form products,what theory is it
    6·1 answer
  • Question 6 is the answer I need
    9·1 answer
  • List the two things that affect gravitational force.
    7·2 answers
  • The diagram shows two balls before they collide.
    9·2 answers
  • Using science terms like force, mass, energy, and inertia, describe how you could get an object to fly a further distance in a c
    7·1 answer
  • Determine the unbalanced force necessary to accelerate a 2.60 kg object at a rate of 14.0 m/s².
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!