Answer:
2 days 2 hours or 50 hours
Explanation:
800/16=50
Eh not really sure bout this one
<u>ALL of the following work assumes NO AIR RESISTANCE:</u>
1). an object moving under the influence of only gravity, and not in orbit; its horizontal velocity is constant, and its vertical motion is accelerated downward at 9.8 m/s²
2). a parabola
3). Horizontal: velocity is constant, acceleration is zero. . . . Vertical: acceleration is 9.8 m/s² downward, velocity depends on whether it was launched, thrown up, thrown down, dropped, etc.
4). a). the one that was thrown horizontally; b). both hit the ground at the same time; c). both hit the ground with the same vertical velocity
5). a). zero; b). zero; c). gravity ... 9.8 m/s² down; d). 3.06 seconds; e). 4.38 m/s; f). 30 m/s g). no; gravity has no effect on horizontal motion
6). a). 1.8 seconds; b). 13.1 meters; c). 17.6 m/s down; d). 7.3 m/s; gravity has no effect on horizontal motion
7). 45 m/s
8). without air resistance, the ball is traveling horizontally at 13 km/hr, and it lands back in your hand
9). a). 4.49 m/s; b). 29.7 m/s
10). 7.24 meters
11). 700 meters
12). A). 103.7 meters ( ! she's in big trouble ! ); B). 17.5 meters
Answer:
If thermal energy is the motion energy of the particles of a substance, which has more thermal energy—the cup of hot tea or a spoonful of hot tea? It makes sense that the more particles of a substance you have, then the more thermal energy the substance has. The cup of hot tea would have more thermal energy, even if the temperature of the tea is the same in the cup and in the spoon. But which cools down the quickest (has the highest rate of thermal energy transfer)—the tea in the cup or the tea in the spoon? If I have fewer particles of the same substance, then the rate of thermal energy transfer is faster. The tea in the spoon would lose thermal energy more rapidly. So the amount of a substance you have is one factor that affects the rate of thermal energy transfer.
Explanation: