This thermal energy flows as heat within the box and floor, ultimately raising the temperature of both of these objects.
Answer:
Earth's Tilt and The Seasons. Earth, like all of the planets in the Solar System, travels around the Sun. One complete orbit of the Sun is known as a year and it takes Earth 365 days, 5 hours, 48 minutes and 46 seconds to complete an orbit. The changing seasons are caused by the fact that Earth is tilted. please vote me brainliest i can't message no one cuz i haven't got enough points i'm desperate.
Explanation:
The data given in the bar graph is valid because it follows the law of conservation of energy, since the GPE at top of 2nd hill plus KE at top of 2nd hill equals KE at bottom of 1st hill.
<h3>What is law of conservation of energy?</h3>
The law of conservation of energy states that energy can neither be created nor destroyed but can be transformed from one form to another.
Based on the law of conservation of energy, kinetic energy of a roller coaster can be converted into potential energy of the roller coaster and vice versa.
ΔK.E = ΔP.E
where;
- ΔK.E is change in kinetic energy
- ΔP.E is change in potential energy
The kinetic energy of the coaster is greatest at the bottom of the hill, as the coaster moves upward, the kinetic energy decreases and will be converted into potential energy. The potential energy of the coaster increases as the coaster moves up the hill and will become maximum at the highest point of the hill.
From the given data;
GPE at top of 2nd hill + KE at top of 2nd hill = KE at bottom of 1st hill
Learn more about conservation of energy here: brainly.com/question/166559
#SPJ1
Answer:
20.0 cm
Explanation:
Here is the complete question
The normal power for distant vision is 50.0 D. A young woman with normal distant vision has a 10.0% ability to accommodate (that is, increase) the power of her eyes. What is the closest object she can see clearly?
Solution
Now, the power of a lens, P = 1/f = 1/u + 1/v where f = focal length of lens, u = object distance from eye lens and v = image distance from eye lens.
Given that we require a 10 % increase in the power of the lens to accommodate the image she sees clearly, the new power P' = 50.0 D + 10/100 × 50 = 50.0 D + 5 D = 55.0 D.
Also, since the object is seen clearly, the distance from the eye lens to the retina equals the distance between the image and the eye lens. So, v = 2.00 cm = 0.02 m
Now, P' = 1/u + 1/v
1/u = P'- 1/v
1/u = 55.0 D - 1/0.02 m
1/u = 55.0 m⁻¹ - 1/0.02 m
1/u = 55.0 m⁻¹ - 50.0 m⁻¹
1/u = 5.0 m⁻¹
u = 1/5.0 m⁻¹
u = 0.2 m
u = 20 cm
So, at 55.0 dioptres, the closet object she can see is 20 cm from her eye.
Answer:
There is no mechanical advantage
Explanation:
The mechanical advantage is possible only when the force needed to lift a load is lesser than the weight of the load.
For example, is we have a mechanical advantage of 2, the force needed to lift will be 1/2 of the weight of the load, and if we have a mechanical advantage of 4, the force needed will be 1/4 of the weight of the load.
In the attached image there are clear examples of mechanical advantage with pulleys.