1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Harrizon [31]
3 years ago
13

As the pendulum swings through the origin, it has a speed of v0 = 1.1 m/s. If the mass on the end of the pendulum is 15 g, and t

he pendulum is 30 cm long, how high does the pendulum swing before coming back down? What is the angle corresponding to that height?

Physics
1 answer:
serg [7]3 years ago
4 0

Answer:

1: 6.18 cm

2: 52.5609 degrees

Explanation:

We have the pendulum speed at the origin, and in that moment, all energy is kinetic, so we can calculate the pendulum energy by:

Ec = 0.5*m*v^2 = 0.5*0.015*1.1^2 = 0.0091 J

Now with that energy, we can calculate the height the pendulum will reach, as in that moment, the kinetic energy is totally converted to gravitational potencial energy:

Eg = m*g*h = 0.0091

0.015 * 9.81 * h = 0.0091

h = 0.0091 / (0.015 * 9.81 ) = 0.0618 m = 6.18 cm

Looking at the image attached, we can see that the pendulum will form a triangle, and one of the cathetus will be the length of the pendulum minus the height it went up, and the hypotenusa will be the pendulum length.

So, we know that the sine of the angle will be the division between the opposite cathetus and the hypotenusa:

sin(angle) = (30-6.18)/30 = 23.82/30 = 0.794 -> angle = 52.5609 degrees

You might be interested in
"Giant Swing", the seat is connected to two cables as shown in the figure (Figure 1) , one of which is horizontal. The seat swin
Bingel [31]
The horizontal force is m*v²/Lh, where m is the total mass. The vertical force is the total weight (233 + 840)N. 

<span>Fx = [(233 + 840)/g]*v²/7.5 </span>

<span>v = 32.3*2*π*7.5/60 m/s = 25.37 m/s </span>

<span>The horizontal component of force from the cables is Th + Ti*sin40º and the vertical component of force from the cable is Ta*cos40º </span>

<span>Thh horizontal and vertical forces must balance each other. First the vertical components: </span>

<span>233 + 840 = Ti*cos40º </span>

<span>solve for Ti. (This is the answer to the part b) </span>

<span>Horizontally </span>

<span>[(233 + 840)/g]*v²/7.5 = Th + Ti*sin40º </span>

<span>Solve for Th </span>

<span>Th = [(233 + 840)/g]*v²/7.5 - Ti*sin40º </span>

<span>using v and Ti computed above.</span>
3 0
3 years ago
A girl throws a rock horizontally at 10 m/s from the top of a building, 22 m above street level. Assuming free fall conditions a
MAXImum [283]

Answer:21.18 m

Explanation:

Given

initial speed u=10 m/s

height of building h=22 m

time taken to complete 22 m

h=ut+\frac{1}{2}at^2

initial vertical velocity =0

22=\frac{1}{2}gt^2

t=\sqrt{\frac{22\times 2}{g}}

t=2.11 s

Horizontal Distance moved

R=u_x\times t

R=10\times 2.11

R=21.18 m

6 0
3 years ago
A dart is thrown horizontally with an initial speed of 10 m/s toward point P, the bull's-eye on a dart board. It hits at point Q
Kryger [21]
D=s(t) so it would be d=10(.19) d=.19 FOR BITH SNDWERS
3 0
3 years ago
A thin spherical shell of radius R has a total charge +Q uniformly distributed over its surface. Of the following distance r fro
grigory [225]

Answer:

The correct answer is B

Explanation:

Let's calculate the electric field using Gauss's law, which states that the electric field flow is equal to the charge faced by the dielectric permittivity

         Φ._{E} = ∫ E. dA = q_{int} / ε₀

For this case we create a Gaussian surface that is a sphere.  We can see that the two of the sphere and the field lines from the spherical shell grant in the direction whereby the scalar product is reduced to the ordinary product

        ∫ E dA = q_{int} / ε₀

The area of ​​a sphere is

     A = 4π r²

   

    E 4π r² =q_{int} / ε₀

    E = (1 /4πε₀ )  q / r²

Having the solution of the problem let's analyze the points:

A   ) r = 3R / 4  = 0.75 R.

  In this case there is no charge inside the Gaussian surface therefore the electric field is zero

        E = 0

B) r = 5R / 4 = 1.25R

In this case the entire charge is inside the Gaussian surface, the field is

    E = (1 /4πε₀ )  Q / (1.25R)²

    E = (1 /4πε₀ )  Q / R2 1 / 1.56²

    E₀ = (1 /4π ε₀ )  Q / R²

   E_{B} =  Eo /1.56 ²

  E_{B}  = 0.41 Eo

C) r = 2R

All charge inside is inside the Gaussian surface

    E_{B} =(1 /4π ε₀ ) Q    1/(2R)²

    E_{B} = (1 /4π ε₀ ) q/R²   1/4

    E_{B} = Eo  1/4

    E_{B} = 0.25 Eo

D) False the field changes with distance

The correct answer is B

4 0
3 years ago
What type of data allows geologists to know what rock layers lie underneath Minnesota?
mrs_skeptik [129]
The answer is well log data, it is a detailed log of information taken from a borehole which geologist used to study geological formations of the earth's layer taken from samples returned from the borehole which was dugged.
5 0
3 years ago
Other questions:
  • which equations represent the relationship between wavelength and frequency for a sound wave? check all that apply
    14·1 answer
  • You place a box weighing 200.2 N on a inclined plane that makes a 37.1 angle with the horizontal. Compute the component of the g
    14·1 answer
  • Keaton is asked to solve the following physics problem:
    6·1 answer
  • During the annual shuffleboard competition, Renee gives her puck an initial speed of 8.12 m/s. Once leaving her stick, the puck
    7·1 answer
  • What would happen if brains weren't flexible
    9·1 answer
  • PLEASE HELP WILL GIVE BRAINLIEST
    5·1 answer
  • A toy car travels at 5.3 m/s. The car travels a distance of 17.8 m. How long did it
    10·1 answer
  • Hat processes lead to glacial erosion ?
    13·1 answer
  • Your average speed on the first half of a car trip is 69.0 km/h. How fast do you have to drive on the second half of the trip to
    11·1 answer
  • Heat is added to a substance, but its temperature does not rise. Which one of the following statements provides the best explana
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!