Answer:

Explanation:
Given:
- mass of rocket,

- time of observation,

- mass lost by the rocket by expulsion of air,

- velocity of air,

<u>Now the momentum of air will be equal to the momentum of rocket in the opposite direction: </u>(Using the theory of elastic collision)



Answer:
q = 2.65 10⁻⁶ C
Explanation:
For this exercise we use Coulomb's law
F =
In this case they indicate that the load is of equal magnitude
q₁ = q₂ = q
the force is attractive because the signs of the charges are opposite
F =
q =
we calculate
q =
q =
Ra 7 10-12
q = 2.65 10⁻⁶ C
Answer:
4.1 m
Explanation:
10 kW = 10000 W
20mi/h = 20*1.6 km/mi = 32 km/h = 32 * 1000 (m/km) *(1/3600) hr/s = 8.89 m/s
The power yielded by the wind turbine can be calculated using the following formula

where
is the air density, v = 8.89 m/s is the wind speed, A is the swept area and
is the efficiency



The swept area is a circle with radius r being the blade length



Answer:
They are both correct.
Explanation:
The density of an object is defined as the ratio of its mass to its volume. This implies that the density of the object is both proportional to the mass and also to the volume of the object. John only mentioned mass which is correct. Linda mentioned the second variable on which density depends which is the volume of the object.
Hence considering the both statements objectively, one can say that they are both correct.