The third one sliding friction
Explanation:
Answer:
(a) T = 0.015 N
(b) M = 1.53 x 10⁻³ kg = 1.53 g
Explanation:
(a) T = 0.015 N
First, we will find the speed of waves:

where,
v = speed of wave = ?
f = frequency = 120 Hz
λ = wavelength = 6 cm = 0.06 m
Therefore,
v = (120 Hz)(0.06 m)
v = 7.2 m/s
Now, we will find the linear mass density of the coil:

where,
μ = linear mass density = ?
m = mass = 1.45 g = 1.45 x 10⁻³ kg
l = length = 5 m
Thereforre,

Now, for the tension we use the formula:

<u>T = 0.015 N</u>
<u></u>
(b)
The mass to be hung is:

<u>M = 1.53 x 10⁻³ kg = 1.53 g</u>
Answer:
1.6 kg
Step-by-step Solution:
Since Force = mass × acceleration we have:
F = 8N
a= 5 m/s^2
m = ?
By plugging the values above into F=ma we obtain:

Therefore, the Chromebook has a mass of 1.6 kilograms.
Answer:
Hey
Yes, this is true.
As some people have it wrong, waves in the water (ocean) are not waves of moving water, rather the wave is moving through the water. A wave is a disturbance of a medium not the meduim moving.
Answer: (B) There is complete destructive interference between the incoming and reflected waves
Explanation:
For example, if you pluck a guitar the waves will travel back and forth. They consist of nodes and anti-nodes. It is created, when the wave traveling to one side and bounces of the other end and comes back. As it travels to the other side, it is reflected thus, comes back. So standing waves occurs when there is interference.
When the wave is produced, the points where the string is not moving are called nodes and where they are moving are called anti-nodes. The positions where nodes are produced, destructive interference occurs and where anti-nodes are produced, constructive interference occurs