Answer:
1).A mixture having a uniform composition where the components can't be seen separately and all components are in the same state best describes a solution. In chemistry, a solution is a homogeneous mixture composed of two or more substances.
The important point here is that volumetric flow rate in the pump and the pipe is the same.
Q = AV, where Q = Volumetric flow rate, A = Cross sectional area, V = velocity
Q (pump) = (π*15^2)/4*2 = 353.43 cm^3/s
Q (pipe) = (π*(3/10)^2)/4*V = 0.071V
Q (pump) = Q (pipe)
0.071V = 353.43 => V = 5000 cm/s
Therefore, the flow of water in the pipe is 5000 cm/s.
Because then it could mess up the machine with to much energy
Answer:
same 0.81m
Explanation:
in this problem if we assume there no resistance of any sort. and we apply the energy conservation
change in Potential energy = change in kinetic energy
mgh = 0.5mv^2
gh = 0.5v^2
the above relation suggests that the speed at the bottom is only depending on the height it is released from not on the shape, mass or radius.
so at the bottom
put h = 0.81m
9.81 * 0.81 * 2 = v^2
v=3.99 m/s
both CYLINDER and SPHERE will have same velocity at the bottom if released from the same height irrespective of shape and size