I think it’s c and don’t try and open it
Answer:
4 inches
Step-by-step explanation:
Actual dimensions:
Length = 15 feet
Width = 12 feet
Scale dimensions:
Length = 5 inches
Width = x inches
Write a proportion:
![\dfrac{\text{Actual length}}{\text{Scale length}}=\dfrac{\text{Actual width}}{\text{Scale width}}\\ \\ \\\dfrac{15\ feet}{5\ inches}=\dfrac{12\ feet}{x\ inches}\\ \\x=\dfrac{5\ inches\times 12\ feet}{15\ feet}=4\ inches](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Ctext%7BActual%20length%7D%7D%7B%5Ctext%7BScale%20length%7D%7D%3D%5Cdfrac%7B%5Ctext%7BActual%20width%7D%7D%7B%5Ctext%7BScale%20width%7D%7D%5C%5C%20%5C%5C%20%5C%5C%5Cdfrac%7B15%5C%20feet%7D%7B5%5C%20inches%7D%3D%5Cdfrac%7B12%5C%20feet%7D%7Bx%5C%20inches%7D%5C%5C%20%5C%5Cx%3D%5Cdfrac%7B5%5C%20inches%5Ctimes%2012%5C%20feet%7D%7B15%5C%20feet%7D%3D4%5C%20inches)
Answer:
![\displaystyle x \approx 37.4^\circ](https://tex.z-dn.net/?f=%5Cdisplaystyle%20x%20%5Capprox%2037.4%5E%5Ccirc)
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality<u>
</u>
<u>Trigonometry</u>
- [Right Triangles Only] SOHCAHTOA
- [Right Triangles Only] cosθ = adjacent over hypotenuse<u>
</u>
Step-by-step explanation:
<u>Step 1: Define</u>
Angle θ = <em>x</em>
Adjacent Leg = 5.8
Hypotenuse = 7.3
<u>Step 2: Solve for </u><em><u>x</u></em>
- Substitute in variables [Cosine]:
![\displaystyle cosx^\circ = \frac{5.8}{7.3}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20cosx%5E%5Ccirc%20%3D%20%5Cfrac%7B5.8%7D%7B7.3%7D)
- [Fraction] Divide:
![\displaystyle cosx^\circ = 0.794521](https://tex.z-dn.net/?f=%5Cdisplaystyle%20cosx%5E%5Ccirc%20%3D%200.794521)
- [Equality Property] Trig inverse:
![\displaystyle x^\circ = cos^{-1}(0.794521)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20x%5E%5Ccirc%20%3D%20cos%5E%7B-1%7D%280.794521%29)
- Evaluate trig inverse:
![\displaystyle x = 37.39^\circ](https://tex.z-dn.net/?f=%5Cdisplaystyle%20x%20%3D%2037.39%5E%5Ccirc)
- Round:
![\displaystyle x \approx 37.4^\circ](https://tex.z-dn.net/?f=%5Cdisplaystyle%20x%20%5Capprox%2037.4%5E%5Ccirc)
Answer:
<u>______________________________________________________</u>
<u>TRIGONOMETRY IDENTITIES TO BE USED IN THE QUESTION :-</u>
For any right angled triangle with one angle α ,
or ![\sin(90 - \alpha ) = \cos\alpha](https://tex.z-dn.net/?f=%5Csin%2890%20-%20%5Calpha%20%29%20%3D%20%5Ccos%5Calpha)
or ![\sec(90 - \alpha ) = cosec\:\alpha](https://tex.z-dn.net/?f=%5Csec%2890%20-%20%5Calpha%20%29%20%3D%20cosec%5C%3A%5Calpha)
<u>SOME GENERAL TRIGNOMETRIC FORMULAS :-</u>
- <u></u>
or ![cosec \: \alpha = \frac{1}{\sin \alpha }](https://tex.z-dn.net/?f=cosec%20%5C%3A%20%5Calpha%20%20%3D%20%5Cfrac%7B1%7D%7B%5Csin%20%5Calpha%20%7D)
- <u></u>
or ![\sec \alpha = \frac{1}{\cos \alpha }](https://tex.z-dn.net/?f=%5Csec%20%5Calpha%20%3D%20%5Cfrac%7B1%7D%7B%5Ccos%20%5Calpha%20%7D)
<u>______________________________________________________</u>
Now , lets come to the question.
In a right angled triangle , let one angle be α (in place of theta) .
So , lets solve L.H.S.
![=> sin\alpha \times \sec\alpha](https://tex.z-dn.net/?f=%3D%3E%20sin%5Calpha%20%20%5Ctimes%20%5Csec%5Calpha)
![=> \sin\alpha \times \frac{1}{\cos\alpha }](https://tex.z-dn.net/?f=%3D%3E%20%5Csin%5Calpha%20%20%5Ctimes%20%5Cfrac%7B1%7D%7B%5Ccos%5Calpha%20%7D)
![=> \frac{\sin\alpha }{\cos\alpha }](https://tex.z-dn.net/?f=%3D%3E%20%5Cfrac%7B%5Csin%5Calpha%20%7D%7B%5Ccos%5Calpha%20%7D)
= R.H.S.
∴ L.H.S. = R.H.S. (Proved)