Answer:D
Explanation:
options A-C has the option pepsi which is an enzyme that is active in the stomach with a PH of 2.
Answer:
Approximately 56.8 liters.
Assumption: this gas is an ideal gas, and this change in temperature is an isobaric process.
Explanation:
Assume that the gas here acts like an ideal gas. Assume that this process is isobaric (in other words, pressure on the gas stays the same.) By Charles's Law, the volume of an ideal gas is proportional to its absolute temperature when its pressure is constant. In other words
,
where
is the final volume,
is the initial volume,
is the final temperature in degrees Kelvins.
is the initial temperature in degrees Kelvins.
Convert the temperatures to degrees Kelvins:
.
.
Apply Charles's Law to find the new volume of this gas:
.
Molecules will move faster and spread apart on warmer temperatures The colder it get the slower the molecules move so naturally those water molecules are on the path to freezing
Answer:
The answer is 2.660 mol/l
Explanation:
Given: n= 0.0665, v= 25.00ml
Required: C
C (molarity)= n (of solute)/ v (of solvent) [ standard unit: mol/l]
First convert volume of solvent in its standard unit, i.e. litres(L)
v= 25.00ml/1000= 0.02500L
C = 0.0665 mol / 0.02500 L= 2.660 mL (In proper significant digits i.e. 4 sigdigs)
Therefore, The molarity of the sulfuric acid is 2.660 mol/L :)