Answer:
Equilibrium shifts to the right
Explanation:
An exothermic reaction is one in which temperature is released to the environment. Hence, if the reaction vessel housing an exothermic reaction is touched after reaction completion, we will notice that the reaction vessel e.g beaker is hot.
To consider the equilibrium response to temperature changes, we need to consider if the reaction is exothermic or endothermic. In the case of this particular question, it has been established that the reaction is exothermic.
Heat is released to the surroundings as the reactants are at a higher energy level compared to the products. Hence, increasing the temperature will favor the formation of more reactants and as such, the equilibrium position will shift to the left to pave way for the formation of more reactants. Thus , more acetylene and hydrogen would be yielded
Moles of Li2CO3 = 1.53/73.891 = 0.0207 mole
Since HCl is in excess, amount of CO2 will depend on the limiting reagent which is Li2CO3.
∴Moles of CO2 = Moles of Li2CO3 = 0.0207.
Answer:
![[SO_2Cl_2] = 0.09983 M](https://tex.z-dn.net/?f=%5BSO_2Cl_2%5D%20%3D%200.09983%20M)
Explanation:
Write the balance chemical equation ,

initial concenration of 
lets assume that degree of dissociation=
concenration of each component at equilibrium:
![[SO_2Cl_2] = 0.1-0.1\alpha](https://tex.z-dn.net/?f=%5BSO_2Cl_2%5D%20%3D%200.1-0.1%5Calpha)
![[SO_2] = 0.1\alpha](https://tex.z-dn.net/?f=%5BSO_2%5D%20%3D%200.1%5Calpha)
![[Cl_2] = 0.1\alpha](https://tex.z-dn.net/?f=%5BCl_2%5D%20%3D%200.1%5Calpha)


as
is very small then we can neglect 
therefore ,



Eqilibrium concenration of ![[SO_2Cl_2] = 0.1-0.1\alpha = 0.1-0.1\times 0.00173](https://tex.z-dn.net/?f=%5BSO_2Cl_2%5D%20%3D%200.1-0.1%5Calpha%20%3D%200.1-0.1%5Ctimes%200.00173)
![[SO_2Cl_2] = 0.09983 M](https://tex.z-dn.net/?f=%5BSO_2Cl_2%5D%20%3D%200.09983%20M)
The change in temperature of the metal is 6.1°C. Details about change in temperature can be found below.
<h3>How to calculate change in temperature?</h3>
The change in temperature of a substance can be calculated by subtracting the initial temperature of the substance from the final temperature.
According to this question, a 25.0 g sample of metal at 16.0 °C is warmed to 22.1 °C by 259J of energy.
This means that the change in temperature of the metal can be calculated as:
∆T = 22.1°C - 16°C
∆T = 6.1°C
Therefore, the change in temperature of the metal is 6.1°C.
Learn more about change in temperature at: brainly.com/question/19051558
#SPJ1