You would have to show me the answers
The reaction of iron (III) oxide and aluminum is initiated by heat released from a small amount "starter mixture". This reaction is an oxidation-reduction reaction, a single replacement reaction, producing great quantities of heat (flame and sparks) and a stream of molten iron and aluminum oxide which pours out of a hole in the bottom of the pot into sand.
The balanced chemical equation for this reaction is:
2 Al(s) + Fe2O3(s) --> 2Fe(s) + Al2O3(s) + 850 kJ/mol
Curriculum Notes
This chemical reaction can be used to demonstrate an exothermic reaction, a single replacement or oxidation-reduction reaction, and the connection between ∆H calculated for this reaction using heats of formation and Hess' Law and calculating ∆H for this reaction using qrxn = mc∆T and the moles of limiting reactant. This reaction also illustrates the role of activation energy in a chemical reaction. The thermite mixture must be raised to a high temperature before it will react.
To determine how much thermal energy is released in this reaction, heats of formation values and Hess' Law can be used.
By definition, the deltaHfo of an element in its standard state is zero.
2 Al(s) + Fe2O3(s) --> 2Fe (s) + Al2O3 (s)
The deltaH for this reaction is the sum of the deltaHfo's of the products - the sum of the deltaHfo's of the reactants (multiplying each by their stoichiometric coefficient in the balanced reaction equation), i.e.:
deltaHorxn = (1 mol)(deltaHfoAl2O3) + (2 mol)(deltaHfoFe) - (1 mol)(deltaHfoFe2O3) - (2 mol)(deltaHfoAl)
deltaHorxn = (1 mol)(-1,669.8 kJ/mol) + (2 mol)(0) - (1 mol)(-822.2 kJ/mol) - (2mol)(0 kJ/mol)
deltaHorxn = -847.6 kJ
The melting point of iron is 1530°C (or 2790°F).
MARK ME BRAINLIEST
Answer:
C. The half-life of C-14 is about 40,000 years.
Explanation:
The only false statement from the options is that the half-life of C-14 is 40,000yrs.
The half-life of an isotope is the time it takes for half of a radioactive material to decay to half of its original amount. C-14 has an half-life of 5730yrs. This implies that during every 5730yrs, C-14 will reduce to half of its initial amount.
- All living organisms contain both stable C-12 and the unstable isotope of C-14
- The lower the C-14 compared to the C-12 ratio in an organism, the older it is.
Hydrochloric acid ionisation is as follows;
HCl ---> H⁺ + Cl⁻
HCl is a strong base so there's complete dissociation of acid to H⁺ ions
The number of HCl moles is equivalent to number of H⁺ ions present
1 L of solution contains - 11.6 moles of H⁺ ions
In 35 ml number of moles - 11.6 mol/L / 1000 ml x 35 ml = 0.406 mol
This number of moles are dissolved in 500 ml
therefore molarity = 0.406 mol /500 ml x 1000 ml = 0.812 M
Answer:0.005M
Explanation:
First deduce the oxidation and reduction half equations and from that obtain the balanced redox reaction equation. From that, the number of moles of reacting species are seen from the stoichiometry of the reaction from which the number of moles of oxalate is obtained and substituted to obtain the molar concentration of oxalate.