Combustion is a chemical reaction between a fuel and an oxidant, oxygen, to give off combustion products and heat. Complete combustion results when all of the fuel is consumed to form carbon dioxide and water, as in the case of a hydrocarbon fuel. Incomplete combustion results when insufficient oxygen reacts with the fuel, forming soot and carbon monoxide.
The complete combustion of propane proceeds through the following reaction:

+

-->

+

Combustion is an exothermic reaction, which means that it gives off heat as the reaction proceeds. For the complete combustion of propane, the heat of combustion is (-)2220 kJ/mole, where the minus sign indicates that the reaction is exothermic.
The molar mass of propane is 44.1 grams/mole. Using this value, the number of moles propane to be burned can be determined from the mass of propane given. Afterwards, this number of moles is multiplied by the heat of combustion to give the total heat produced from the reaction of the given mass of propane.
14.50 kg propane x <u> 1000 g </u> x <u> 1 mole propane </u> x <u> 2220 kJ </u>
1 kg 44.1 g 1 mole
=
729,931.97 kJ
Answer:
No
Explanation:
I'm not educated enough on the matter but from what I've been taught water boils at 100 Celsius and it simultaneously evaporates.
<u>Answer:</u> The original element is 
<u>Explanation:</u>
Alpha decay is defined as the process in which alpha particle is emitted. In this process, a heavier nuclei decays into a lighter nuclei. The alpha particle released carries a charge of +2 units.
The released alpha particle is also known as helium nucleus.

For the given alpha decay process of an isotope:

<u>To calculate A:</u>
Total mass on reactant side = total mass on product side
A = 208 + 4
A = 212
<u>To calculate Z:</u>
Total atomic number on reactant side = total atomic number on product side
Z = 82 + 2
Z = 84
The isotopic symbol of unknown element is 
Hence, the original element is 
Answer:
is this based on the newtons law and balnce force
Explanation:
According to the balanced chemical equation:
4 HPO₃ + 12 C → 2 H₂ + 12 CO + P₄
4 moles of HPO₃ ---gives---> 12 moles of CO
2.73 moles of HPO₃ ---gives---> ? moles of CO
so number of moles of CO =

= 8.19 moles of CO
Number of molecules of CO = number of moles * Avogadro's number
= 8.19 * (6.022 * 10²³) = 4.93 * 10²⁴ molecules