Answer:
11.78meters
Explanation:
Given data
Mass m = 100kg
Length of cord= 10m
Spring constant k= 35N/m
At the greatest vertical distance, the spring potential energy is equal to the gravitational potential energy
That is
Us=Ug
Us= 1/2kx^2
Ug= mgh
1/2kx^2= mgh
0.5*35*10^2= 100*9.81*h
0.5*35*100=981h
1750=981h
h= 1750/981
h= 1.78
Hence the bungee jumper will reach 1.78+10= 11.78meters below the surface of the bridge
Answer:
The Resultant Induced Emf in coil is 4∈.
Explanation:
Given that,
A coil of wire containing having N turns in an External magnetic Field that is perpendicular to the plane of the coil which is steadily changing. An Emf (∈) is induced in the coil.
To find :-
find the induced Emf if rate of change of the magnetic field and the number of turns in the coil are Doubled (but nothing else changes).
So,
Emf induced in the coil represented by formula
∈ =
...................(1)
Where:
.
{ B is magnetic field }
{A is cross-sectional area}
.
No. of turns in coil.
.
Rate change of induced Emf.
Here,
Considering the case :-
&
Putting these value in the equation (1) and finding the new emf induced (∈1)
∈1 =
∈1 =
∈1 =![4 [-N\times\frac{d\phi}{dt}]](https://tex.z-dn.net/?f=4%20%5B-N%5Ctimes%5Cfrac%7Bd%5Cphi%7D%7Bdt%7D%5D)
∈1 = 4∈ ...............{from Equation (1)}
Hence,
The Resultant Induced Emf in coil is 4∈.
<span>A. An impulse of a force changes the momentum of a body and has the same units and dimensions as momentum.</span>
ANSWER: d) 8
EXPLANATION: Two sets of two shared electrons (4 electrons total shared) = one set of a double covalent bond.
Therefore, 8 electrons total shared = two sets of double covalent bonds
Answer
given,
length of the swing = 26.2 m
inclined at an angle = 28°
let, the initial height of the Tarzan be h
h = L (1 - cos θ)
a) initial velocity v₁ = 0 m/s
final velocity of Tarzan = v_f
law of conservation of energy
PE_i + KE_i = PE_f + KE_f






= 7.75 m/s
the speed tarzan at the bottom of the swing
v_f = 7.75 m/s
b)initial speed of the = 3 m/s






v_f= 11.29 m/s