<span>An event that breaks objects into smaller objects or pieces is called destructive force
</span><span>Tornadoes, Hurricanes, Earthquakes, Volcanoes, Tsunamis and more are some of examples
</span><span>Forces that wear down, destroy is right answer</span>
Answer:
8.467 gm
Explanation:
The law governing this problem is "The Law of Constant Composition "
As per this law, all compounds irrespective of their origin and source have the same composition and properties in their purest form
It is a simple proportion and ratio related problem.
1.50 grams of carbon require 2.0 grams of oxygen
1.0 grams of carbon will require oxygen
=
6.35 grams of carbon will require oxygen
= 8.4666\\= 8.467
<span>The angular momentum of a particle in orbit is
l = m v r
Assuming that no torques act and that angular momentum is conserved then if we compare two epochs "1" and "2"
m_1 v_1 r_1 = m_2 v_2 r_2
Assuming that the mass did not change, conservation of angular momentum demands that
v_1 r_1 = v_2 r_2
or
v1 = v_2 (r_2/r_1)
Setting r_1 = 40,000 AU and v_2 = 5 km/s and r_2 = 39 AU (appropriate for Pluto's orbit) we have
v_2 = 5 km/s (39 AU /40,000 AU) = 4.875E-3 km/s
Therefore, </span> the orbital speed of this material when it was 40,000 AU from the sun is <span>4.875E-3 km/s.
I hope my answer has come to your help. Thank you for posting your question here in Brainly.
</span>
Light year is a unit of measure of time that makes use of the speed of light and distance between objects to determine the number of years it will take for the light to travel. We can determine what element the object is made up of by the wavelength of the color.
The new period is D) √2 T

<h3>Further explanation</h3>
Let's recall Elastic Potential Energy and Period of Simple Pendulum formula as follows:

where:
<em>Ep = elastic potential energy ( J )</em>
<em>k = spring constant ( N/m )</em>
<em>x = spring extension ( compression ) ( m )</em>


where:
<em>T = period of simple pendulum ( s )</em>
<em>L = length of pendulum ( m )</em>
<em>g = gravitational acceleration ( m/s² )</em>
Let us now tackle the problem!

<u>Given:</u>
initial length of pendulum = L₁ = L
initial mass = M₁ = M
final length of pendulum = L₂ = 2L
final mass = M₂ = 2M
initial period = T₁ = T
<u>Asked:</u>
final period = T₂ = ?
<u>Solution:</u>






<h3>Learn more</h3>

<h3>Answer details</h3>
Grade: High School
Subject: Physics
Chapter: Elasticity