The second ball should strike at double the original t value
Green is reflected off of most plant leaves.
A). m/s ... meters per second.
That's a speed.
b). m/s² ... (meters per second) per second.
Acceleration.
c). m²/s ... square meters per second.
Rate of change of area.
Meaningless unit, unless you happen to be
a painter of houses or a mower of lawns.
d). kg-m/s² ... (mass) x (an acceleration).
This is a unit of force.
In fact, it's the definition of "newton".
Here in this case we can use work energy theorem
As per work energy theorem
Work done by all forces = Change in kinetic Energy of the object
Total kinetic energy of the solid sphere is ZERO initially as it is given at rest.
Final total kinetic energy is sum of rotational kinetic energy and translational kinetic energy

also we know that


Now kinetic energy is given by





Now by work energy theorem
Work done = 10500 - 0 = 10500 J
So in the above case work done on sphere is 10500 J
Recall this gas law:
= 
P₁ and P₂ are the initial and final pressures.
V₁ and V₂ are the initial and final volumes.
T₁ and T₂ are the initial and final temperatures.
Given values:
P₁ = 475kPa
V₁ = 4m³, V₂ = 6.5m³
T₁ = 290K, T₂ = 277K
Substitute the terms in the equation with the given values and solve for Pf:

<h3>P₂ = 279.2kPa</h3>