The correct answer is
<span>A) 0 m
</span><span>
In fact, the displacement is a vectorial quantity that corresponds to the difference between the initial and the final position of an object in motion. In this problem, the final position of the ball is equal to its initial position (because the ball returns back to where it was launched), so the displacement of the ball is zero.
</span>
Answer:
a. the core will spin faster.
Explanation:
By law of conservation of angular momentum
(mvR)i= (mvR)f
m= mass of star
v= speed of star
R= radius of star
i= initial
f= final
since, size(R) of the star is reduced by factor of 10,000 and mass remains the same, the velocity must increase by the same factor to keep the angular momentum conserved.
Hence, a. the core will spin faster.
Answer:
I₂ = 25.4 W
Explanation:
Polarization problems can be solved with the malus law
I = I₀ cos² θ
Let's apply this formula to find the intendant intensity (Gone)
Second and third polarizer, at an angle between them is
θ₂ = 68.0-22.2 = 45.8º
I = I₂ cos² θ₂
I₂ = I / cos₂ θ₂
I₂ = 75.5 / cos² 45.8
I₂ = 155.3 W
We repeat for First and second polarizer
I₂ = I₁ cos² θ₁
I₁ = I₂ / cos² θ₁
I₁ = 155.3 / cos² 22.2
I₁ = 181.2 W
Now we analyze the first polarizer with the incident light is not polarized only half of the light for the first polarized
I₁ = I₀ / 2
I₀ = 2 I₁
I₀ = 2 181.2
I₀ = 362.4 W
Now we remove the second polarizer the intensity that reaches the third polarizer is
I₁ = 181.2 W
The intensity at the exit is
I₂ = I₁ cos² θ₂
I₂ = 181.2 cos² 68.0
I₂ = 25.4 W
Briefly outline the caloric theory about the nature of heat