v=fw (Assume for this example w is wavelength). w=v/f. w=100/1000= 0.1 m. The wavelength is 0.1 meters
Mole fraction of Oxygen=0.381
Mole fraction of Oxygen= (range of moles of oxygen) ÷(general moles)
also, mole fraction of oxygen = (partial stress of oxygen) ÷ (total strain)
consequently , mole fraction of Oxygen= (2.31 atm)÷(2.31 atm + 3.75 atm)
= 0.381
The mole fraction may be calculated by means of dividing the variety of moles of 1 element of a solution by the entire quantity of moles of all the additives of a solution. It is cited that the sum of the mole fraction of all of the components inside the solution should be identical to 1.
Mole fraction is a unit of awareness. in the solution, the relative amount of solute and solvents are measured by way of the mole fraction and it's far represented through “X.” The mole fraction is the variety of moles of a selected aspect inside the answer divided by way of the entire range of moles in the given answer.
Mole fraction is the ratio between the moles of a constituent and the sum of moles of all ingredients in a mixture. Mass fraction is the ratio between the mass of a constituent and the full mass of a mixture.
The question is incomplete. Please read below to find the missing content.
Assuming that only the listed gases are present, what would the mole fraction of oxygen gas be for each of the following situations? A gas sample of 2.31 atm of oxygen gas and 3.75 atm of hydrogen gas react to form water vapor. Assume the volume of the container and the temperature inside the container does not change.
Learn more about the mole fraction here brainly.com/question/14783710
#SPJ1
Hi!
The correct option would be 3.85x10^(24)
To find the number of atoms in 250g of potassium, we need to first calculate the number of atoms in
1 mole of Potassium = 39g which contains 6.022x10^(23) atoms of K
<em>(Avogadro's constant value for the amount of molecules/atoms in one mole of any substance)</em>
<em>Solution</em>
So as 39g of Potassium contains 6.022x10^(23) K atoms
1g of Potassium would contain 6.022x10^(23) / 39 = 1.544 x10^(22) atoms
So 250g of Potassium would contain 1.544x10^(22) x 250 = 3.86x10^(24) atoms
This question includes four answer choices:
A. definite volume, highest molecular motion, highest kinetic energy
B. indefinite volume, least molecular motion, highest kinetic energy
C. definite volume, least molecular motion, lowest kinetic energy
D. definite volume, no molecular motion, lowest kinetic energy
Solids do not have the highest molecular motion (on the contrary they have the least molecular motion), so you can discard option A. Solids have a definite volume and the highest kinetic energy (given that they have the least molecular motion), so you discard option C. Molecules always have a vibrational motion, so you discard option D. Option C, have only characteristics that correctly describes a solid: definite volume, least molecular motion, lowest kinetic energy. Therefore, the answer is the option C.
<span /><span>
</span>