Iodine and Calcium is the correct answer
Answer:
0.85 mole
Explanation:
Step 1:
The balanced equation for the reaction of CaCl2 to produce CaCO3. This is illustrated below:
When CaCl2 react with Na2CO3, CaCO3 is produced according to the balanced equation:
CaCl2 + Na2CO3 -> CaCO3 + 2NaCl
Step 2:
Conversion of 85g of CaCO3 to mole. This is illustrated below:
Molar Mass of CaCO3 = 40 + 12 + (16x3) = 40 + 12 + 48 = 100g/mol
Mass of CaCO3 = 85g
Moles of CaCO3 =?
Number of mole = Mass /Molar Mass
Mole of CaCO3 = 85/100
Mole of caco= 0.85 mole
Step 3:
Determination of the number of mole of CaCl2 needed to produce 85g (i.e 0. 85 mole) of CaCO3.
This is illustrated below :
From the balanced equation above,
1 mole of CaCl2 reacted to produced 1 mole of CaCO3.
Therefore, 0.85 mole of CaCl2 will also react to produce 0.85 mole of CaCO3.
From the calculations made above, 0.85 mole of CaCl2 is needed to produce 85g of CaCO3
<span>C) <u>Colloids</u></span><span>
Colloids have small non-dissolved particles that flow around in the mixture. These particles do not settle over time. When a light is shined on colloids the scattering characteristic of the Tyndall effect are visable.</span>
Answer:
A three-carbon chain has a straight line extending from the center carbon.
Explanation:
Isomers are compounds having the same molecular formula but different structural formulas.
Butane and 2-methylpropane are constitutional isomers. Constitutional isomers differ in the way that the constituent atoms are connected to each other.
Butane is a straight chain compound while the compound 2-methylpropane consists of a three-carbon chain which has a straight line extending from the center carbon.
Volume is 60 and the area is 94 have a great day